Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(6)2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38535645

RESUMO

In this study, we performed a detailed analysis of -sputtered-nylon 6,6 plasma polymer nanoparticles (NPs). Following a previous study using standard techniques such as X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy, we employed unconventional approaches, specifically solid- and liquid-state high-resolution nuclear magnetic resonance (NMR) spectroscopy, supplemented by gel permeation chromatography (GPC). Scanning electron microscopy (SEM) was also used to examine changes in the size of the NPs after contact with solvents and after heating. Our investigations revealed suspected strong binding and networking of the NPs, and a soluble monomer/oligomer phase was identified and characterised. This fraction is removable using solvent or heat treatment without significantly affecting the size of the NPs. Additionally, we suggested the chemical structure of this soluble phase. Our findings support the proposed rubber-like character of plasma polymer NPs and explain their strong tendency to reflect from substrates upon high-speed impact.

2.
Nanoscale ; 16(5): 2452-2465, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38224337

RESUMO

ZrN nanofluids may exhibit unique optoelectronic properties because of the matching of the solar spectrum with interband transitions and localized surface plasmon resonance (LSPR). Nevertheless, these nanofluids have scarcely been investigated, mainly because of the complexity of the current synthetic routes that involve aggressive chemicals and high temperatures. This work aims to validate reactive dc magnetron sputtering of zirconium in Ar/N2 as an environmentally benign, annealing-free method to produce 22 nm-sized, highly crystalline, stoichiometric, electrically conductive, and plasmonic ZrN nanoparticles (NPs) of cubic shape and to load them into vacuum-compatible liquids of different chemical compositions (polyethylene glycol (PEG), paraffin, and pentaphenyl trimethyl trisiloxane (PTT)) in one step. The nanofluids demonstrate LSPR in the red/near-IR range that gives them a bluish color in transmittance. The nanofluids also demonstrate complex photoluminescence behavior such that ZrN NPs enhance the photoluminescence (PL) intensity of paraffin and PEG, whereas the PL of PTT remains almost invariable. Based on DFT calculations, different energetic barriers to charge transfer between ZrN and the organic molecules are suggested as the main factors that influence the observed optoelectronic response. Overall, our study provides a novel approach to the synthesis of transition metal nitride nanofluids in an environmentally friendly manner, deepens the understanding of the interactions between ZrN and organic molecules, and unveils new optoelectronic phenomena in such systems.

3.
Nanoscale Adv ; 5(3): 955-969, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36756512

RESUMO

Since the time of Faraday's experiments, the optical response of plasmonic nanofluids has been tailored by the shape, size, concentration, and material of nanoparticles (NPs), or by mixing different types of NPs. To date, water-based liquids have been the most extensively investigated host media, while polymers, such as poly(ethylene glycol) (PEG), have frequently been added to introduce repulsive steric interactions and protect NPs from agglomeration. Here, we introduce an inverse system of non-aqueous nanofluids, in which Ag and Cu NPs are dispersed in PEG (400 g mol-1), with no solvents or chemicals involved. Our single-step approach comprises the synthesis of metal NPs in the gas phase using sputtering-based gas aggregation cluster sources, gas flow transport of NPs, and their deposition (optionally simultaneous) on the PEG surface. Using computational fluid dynamics simulations, we show that NPs diffuse into PEG at an average velocity of the diffusion front of the order of µm s-1, which is sufficient for efficient loading of the entire polymer bulk. We synthesize yellow Ag/PEG, green Cu/PEG, and blue Ag/Cu/PEG nanofluids, in which the color is given by the position of the plasmon resonance. NPs are prone to partial agglomeration and sedimentation, with a slower kinetics for Cu. Density functional theory calculations combined with UV-vis data and zeta-potential measurements prove that the surface oxidation to Cu2O and stronger electrostatic repulsion are responsible for the higher stability of Cu NPs. Adopting the De Gennes formalism, we estimate that PEG molecules adsorb on the NP surface in mushroom coordination, with the thickness of the adsorbed layer L < 1.4 nm, grafting density σ < 0.20, and the average distance between the grafted chains D > 0.8 nm. Such values provide sufficient steric barriers to retard, but not completely prevent, agglomeration. Overall, our approach offers an excellent platform for fundamental research on non-aqueous nanofluids, with metal-polymer and metal-metal interactions unperturbed by the presence of solvents or chemical residues.

4.
Sci Rep ; 12(1): 17369, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253475

RESUMO

Nuclear magnetic resonance (NMR) lineshape analysis is a powerful tool for the study of chemical kinetics. Here we provide techniques for analysis of the relationship between experimentally observed spin kinetics (transitions between different environments [Formula: see text]) and corresponding chemical kinetics (transitions between distinct chemical species; e.g., free host and complexed host molecule). The advantages of using analytical solutions for two-, three- or generally N-state exchange lineshapes (without J-coupling) over the widely used numerical calculation for NMR spectral fitting are presented. Several aspects of exchange kinetics including the generalization of coalescence conditions in two-state exchange, the possibility of multiple processes between two states, and differences between equilibrium and steady-state modes are discussed. 'Reduced equivalent schemes' are introduced for spin kinetics containing fast-exchanging states, effectively reducing the number of exchanging states. The theoretical results have been used to analyze a host-guest system containing an oxoporphyrinogen complexed with camphorsulfonic acid and several other literature examples, including isomerization, protein kinetics, or enzymatic reactions. The theoretical treatment and experimental examples present an expansion of the systematic approach to rigorous analyses of systems with rich chemical kinetics through NMR lineshape analysis.


Assuntos
Imageamento por Ressonância Magnética , Proteínas , Cinética , Espectroscopia de Ressonância Magnética/métodos , Física
5.
Gels ; 8(9)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36135298

RESUMO

Swelling experiments and NMR spectroscopy were combined to study effect of various stimuli on the behavior of hydrogels with a single- and double-network (DN) structure composed of poly(N,N'-diethylacrylamide) and polyacrylamide (PAAm). The sensitivity to stimuli in the DN hydrogel was found to be significantly affected by the introduction of the second component and the formation of the double network. The interpenetrating structure in the DN hydrogel causes the units of the component, which is insensitive to the given stimulus in the form of the single network (SN) hydrogel, to be partially formed as globular structures in DN hydrogel. Due to the hydrophilic PAAm groups, temperature- and salt-induced changes in the deswelling of the DN hydrogel are less intensive and gradual compared to those of the SN hydrogel. The swelling ratio of the DN hydrogel shows a significant decrease in the dependence on the acetone content in acetone-water mixtures. A certain portion of the solvent molecules bound in the globular structures was established from the measurements of the 1H NMR spin-spin relaxation times T2 for the studied DN hydrogel. The time-dependent deswelling and reswelling kinetics showed a two-step profile, corresponding to the solvent molecules being released and absorbed during two processes with different characteristic times.

6.
Materials (Basel) ; 14(2)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33477840

RESUMO

Plasma polymer films typically consist of very short fragments of the precursor molecules. That rather limits the applicability of most plasma polymerisation/plasma-enhanced chemical vapour deposition (PECVD) processes in cases where retention of longer molecular structures is desirable. Plasma-assisted vapour thermal deposition (PAVTD) circumvents this limitation by using a classical bulk polymer as a high molecular weight "precursor". As a model polymer in this study, polylactic acid (PLA) has been used. The resulting PLA-like films were characterised mostly by X-ray photoelectron spectroscopy (XPS) and nuclear magnetic resonance (NMR) spectroscopy. The molecular structure of the films was found to be tunable in a broad range: from the structures very similar to bulk PLA polymer to structures that are more typical for films prepared using PECVD. In all cases, PLA-like groups are at least partially preserved. A simplified model of the PAVTD process chemistry was proposed and found to describe well the observed composition of the films. The structure of the PLA-like films demonstrates the ability of plasma-assisted vapour thermal deposition to bridge the typical gap between the classical and plasma polymers.

7.
Polymers (Basel) ; 12(11)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33121186

RESUMO

Temperature response of double network (DN) hydrogels composed of thermoresponsive poly(N,N'-diethylacrylamide) (PDEAAm) and hydrophilic polyacrylamide (PAAm) or poly(N,N`-dimethylacrylamide) (PDMAAm) was studied by a combination of swelling measurements, differential scanning calorimetry (DSC) and 1H NMR and UV-Vis spectroscopies. Presence of the second hydrophilic network in DN hydrogels influenced their thermal sensitivity significantly. DN hydrogels show less intensive changes in deswelling, smaller enthalpy, and entropy changes connected with phase transition and broader temperature interval of the transition than the single network (SN) hydrogels. Above the transition, the DN hydrogels contain significantly more permanently bound water in comparison with SN hydrogels due to interaction of water with the hydrophilic component. Unlike swelling and DSC experiments, a rather abrupt transition was revealed from temperature-dependent NMR spectra. Release study showed that model methylene blue molecules are released from SN and DN hydrogels within different time scale. New thermodynamical model of deswelling behaviour based on the approach of the van't Hoff analysis was developed. The model allows to determine thermodynamic parameters connected with temperature-induced volume transition, such as the standard change of enthalpy and entropy and critical temperatures and characterize the structurally different states of water.

8.
ChemistryOpen ; 7(5): 323-335, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29744284

RESUMO

Herein, we modulate the chromic response of a highly colored tetrapyrrole macrocycle, namely, tetrakis(3,5-di-tert-butyl-4-oxocyclohexadien-2,5-yl)porphyrinogen (OxP) by structural modification. N-Benzylation at the macrocyclic nitrogen atoms leads to stepwise elimination of the two calix[4]pyrrole-type binding sites of OxP and serial variation of the chromic properties of the products, double N-benzylated Bz2OxP and tetra N-benzylated Bz4OxP. The halochromic (response to acidity) and solvatochromic (response to solvent polarity) properties were studied by using UV/Vis spectroscopy and NMR spectroscopy in nonpolar organic solvents. Titration experiments were used to generate binding isotherms to elucidate their binding properties with difluoroacetic acid. Differences in the halochromic properties of the compounds allowed construction of a colorimetric scale of acidity in nonpolar solvents, as the compounds in the series OxP, Bz2OxP, and Bz4OxP are increasingly difficult to protonate but maintain their propensity to change color upon protonation. The concurrent effects of binding-site blocking and modulation of acidity sensitivity are important new aspects for the development of colorimetric indicators.

9.
ACS Omega ; 3(9): 11865-11873, 2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31459272

RESUMO

Poly(N-isopropylacrylamide) (PNIPAM) is an important polymer with stimuli-responsive properties, making it suitable for various uses. Phase behavior of the temperature-sensitive PNIPAM polymer in the presence of four low-molecular weight additives tert-butylamine (t-BuAM), tert-butyl alcohol (t-BuOH), tert-butyl methyl ether (t-BuME), and tert-butyl methyl ketone (t-BuMK) was studied in water (D2O) using high-resolution nuclear magnetic resonance (NMR) spectroscopy and dynamic light scattering. Phase separation was thermodynamically modeled as a two-state process which resulted in a simple curve which can be used for fitting of NMR data and obtaining all important thermodynamic parameters using simple formulas presented in this paper. The model is based on a modified van't Hoff equation. Phase separation temperatures T p and thermodynamic parameters (enthalpy and entropy change) connected with the phase separation of PNIPAM were obtained using this method. It was determined that T p is dependent on additives in the following order: T p(t-BuAM) > T p(t-BuOH) > T p(t-BuME) > T p(t-BuMK). Also, either increasing the additive concentration or increasing pK a of the additive leads to depression of T p. Time-resolved 1H NMR spin-spin relaxation experiments (T 2) performed above the phase separation temperature of PNIPAM revealed high colloidal stability of the phase-separated polymer induced by the additives (relative to the neat PNIPAM/D2O system). Small quantities of selected suitable additives can be used to optimize the properties of PNIPAM preparations including their phase separation temperatures, colloidal stabilities, and morphologies, thus improving the prospects for the application.

10.
ACS Appl Mater Interfaces ; 8(12): 8201-12, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26953817

RESUMO

Immiscible polymer blends tend to undergo phase separation with the formation of nanoscale architecture which can be used in a variety of applications. Different wet-chemistry techniques already exist to fix the resultant polymeric structure in predictable manner. In this work, an all-dry and plasma-based strategy is proposed to fabricate thin films of microphase-separated polyolefin/polyether blends. This is achieved by directing (-CH2-)100 and (-CH2-CH2-O-)25 oligomer fluxes produced by vacuum thermal decomposition of poly(ethylene) and poly(ethylene oxide) onto silicon substrates through the zone of the glow discharge. The strategy enables mixing of thermodynamically incompatible macromolecules at the molecular level, whereas electron-impact-initiated radicals serve as cross-linkers to arrest the subsequent phase separation at the nanoscale. The mechanism of the phase separation as well as the morphology of the films is found to depend on the ratio between the oligomeric fluxes. For polyolefin-rich mixtures, polyether molecules self-organize by nucleation and growth into spherical domains with average height of 22 nm and average diameter of 170 nm. For equinumerous fluxes and for mixtures with the prevalence of polyethers, spinodal decomposition is detected that results in the formation of bicontinuous structures with the characteristic domain size and spacing ranging between 5 × 10(1) -7 × 10(1) nm and 3 × 10(2)-4 × 10(2) nm, respectively. The method is shown to produce films with tunable wettability and biologically nonfouling properties.

11.
Acc Chem Res ; 48(3): 521-9, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25734700

RESUMO

Enantiomeric excess (ee) is a measure of the purity of an enantiomer of a chiral compound with respect to the presence of the complementary enantiomer. It is an important aspect of chemistry, especially in the fields of pharmaceuticals and asymmetric catalysis. Existing methods for determination of enantiomeric excesses using nuclear magnetic resonance (NMR) spectroscopy mostly rely on special chiral reagents (auxiliaries) that form two or more diastereomeric complexes with a chiral compound. As a result of this, the NMR spectrum of each enantiomer is different, allowing the determination of enantiomeric excess. In this Account, we describe a molecular design process that has allowed us to prepare prochiral solvating agents for NMR determination of ee of a wide variety of analyte types. At the outset of this work, we initially encountered the phenomenon of NMR peak splitting in the oxoporphyrinogen (OxP) host component of a supramolecular host-guest complex, where the extent of the splitting is apparently proportional to the guests' ee. Upon closer examination of the mechanism of action, it was found that several complicating factors, including prototropic tautomerism, macrocyclic inversion (ring-flipping), and 1:2 host-guest stoichiometry, obstruct potential applications of OxP as a chiral solvating agent. By considering the molecular conformation of the OxP host, a saddle-shaped calix[4]pyrrole, we moved to study the tetraphenylporphyrin (TPP) dication since it has a similar form, and it was found that it could also be used to probe ee. However, although TPP does not suffer from disadvantageous tautomeric processes, it is still subject to macrocyclic inversion and has the additional serious disadvantage of operating for ee sensing only at depressed temperatures. The intrinsic disadvantages of the OxP and TPP systems were finally overcome by covalently modifying the OxP chromophore by regioselective N-alkylation at one face of the molecule. This procedure yields a host Bz2OxP that undergoes 1:1 host-guest interactions, cannot be protonated (and so does not suffer drawbacks due to tautomeric processes), and can interact solely through hydrogen bonding with a much wider range of analyte types, including acids, esters, amines (including amino acid derivatives), and ketones, for the determination of their ee at room temperature. Chiral sensing, in this case, can be understood by considering the breakdown of the host's symmetry when it interacts with a chiral guest under fast exchange. Furthermore, chirality discrimination (i.e., which is the major enantiomer in a sample) can be performed by addition of a small amount of one of the known enantiomers. Adaptation of a symmetrical molecule for ee sensing presents certain intrinsic advantages, including identical binding constants of each enantiomer. Our results indicate that other symmetrical molecules might also be useful as NMR probes of enantiopurity. These systems could provide insights into important chirality principles such as majority rule, intermolecular chirality transfer, and asymmetric reactions. The Bz2OxP system is also of note from the point of view that it does not rely on the formation of diastereomers.

12.
Nat Commun ; 4: 2188, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23864041

RESUMO

Enantiomeric excess of chiral compounds is a key parameter that determines their activity or therapeutic action. The current paradigm for rapid measurement of enantiomeric excess using NMR is based on the formation of diastereomeric complexes between the chiral analyte and a chiral resolving agent, leading to (at least) two species with no symmetry relationship. Here we report an effective method of enantiomeric excess determination using a symmetrical achiral molecule as the resolving agent, which is based on the complexation with analyte (in the fast exchange regime) without the formation of diastereomers. The use of N,N'-disubstituted oxoporphyrinogen as the resolving agent makes this novel method extremely versatile, and appropriate for various chiral analytes including carboxylic acids, esters, alcohols and protected amino acids using the same achiral molecule. The model of sensing mechanism exhibits a fundamental linear response between enantiomeric excess and the observed magnitude of induced chemical shift non-equivalence in the (1)H NMR spectra.


Assuntos
Álcoois/análise , Aminoácidos/análise , Ácidos Carboxílicos/análise , Álcoois/química , Aminoácidos/química , Ácidos Carboxílicos/química , Dicroísmo Circular , Ésteres , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Estrutura Molecular , Porfirinogênios/química , Teoria Quântica , Estereoisomerismo
13.
J Nanosci Nanotechnol ; 10(12): 8408-16, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21121347

RESUMO

The temperature-induced coil-globule transition (micro-phase separation) in water/ethanol solutions of poly(vinyl methyl ether) was studied using NMR spectroscopy, differential scanning calorimetry, optical microscopy and dynamic light scattering. NMR sequence based on spin-echo was introduced in order to determine lower critical solution temperature with high accuracy. Variation in DSC profiles and enthalpy increments depending on ethanol concentration in a water/ethanol mixture was found. Evolution of morphology pattern during heating-cooling cycle was observed using optical microscopy. At lower PVME concentration the globule size distribution was determined using digital image processing. Relative number and relative mass size distributions of globules in a dilute sample were measured by differential scanning calorimetry and subsequently compared with those obtained by optical microscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...