Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 2974, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34016963

RESUMO

Metasurfaces have provided unprecedented freedom for manipulating electromagnetic waves. In metasurface design, massive meta-atoms have to be optimized to produce the desired phase profiles, which is time-consuming and sometimes prohibitive. In this paper, we propose a fast accurate inverse method of designing functional metasurfaces based on transfer learning, which can generate metasurface patterns monolithically from input phase profiles for specific functions. A transfer learning network based on GoogLeNet-Inception-V3 can predict the phases of 28×8 meta-atoms with an accuracy of around 90%. This method is validated via functional metasurface design using the trained network. Metasurface patterns are generated monolithically for achieving two typical functionals, 2D focusing and abnormal reflection. Both simulation and experiment verify the high design accuracy. This method provides an inverse design paradigm for fast functional metasurface design, and can be readily used to establish a meta-atom library with full phase span.

2.
Opt Express ; 28(24): 36084-36094, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33379711

RESUMO

Mode division multiplexing has attracted great attention because it can potentially overcome the limitation of single-mode fiber traffic capacity. However, it has been challenging to realize multiple modes controlling and switching due to the intrinsic overlap of the modes in the transmission waveguide. As a solution, we propose a cascaded phase-shifted long-period fiber grating (PS-LPFG) based multiple mode switching scheme. Using the PS-LPFGs, the multiple guided orbital angular momentum (OAM) modes selective controlling and switching at multi-wavelength can be achieved in few-mode fibers by regulating the grating resonance condition. In principle, a N × N mode switch matrix can be realized by cascading CN2 gratings, where each grating acts as a mode switch element to achieve a couple selected OAM mode switching and meanwhile the other modes are under nonblocking status. As a proof of the concept, a 2 × 2 mode switching between two OAM modes at different wavelengths based on one PS-LPFG element is demonstrated in our experiments. The switching efficiency of the two modes at two wavelengths 1537nm and 1558nm are ∼98.4% and ∼98.7%, respectively. The proposed multiple OAM mode switch has potential applications in the future hybrid multi-dimensional multiplexing optical fiber communication systems.

3.
Opt Lett ; 45(13): 3621-3624, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32630914

RESUMO

The third-order orbital angular momentum (OAM±3) guided mode generation is demonstrated for the first time, to the best of our knowledge, by employing an asymmetric long-period fiber grating (AS-LPFG). The proposed AS-LPFG is modeled by coupled local-mode theory, which is extended to the coupling of core modes and is fabricated by multicycle scanning ablation with increasing power in a six-mode fiber. The experiments demonstrate that one fabricated AS-LPFG can convert the LP01 mode to the third-azimuthal-order (3AO, LP31 or OAM±3) guided mode with efficiency of ∼99.8%. The model and the method presented, in principle, can be used to generate any other high-order modes.

4.
Light Sci Appl ; 8: 97, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31645938

RESUMO

There is an increasing need to remotely monitor people in daily life using radio-frequency probe signals. However, conventional systems can hardly be deployed in real-world settings since they typically require objects to either deliberately cooperate or carry a wireless active device or identification tag. To accomplish complicated successive tasks using a single device in real time, we propose the simultaneous use of a smart metasurface imager and recognizer, empowered by a network of artificial neural networks (ANNs) for adaptively controlling data flow. Here, three ANNs are employed in an integrated hierarchy, transforming measured microwave data into images of the whole human body, classifying specifically designated spots (hand and chest) within the whole image, and recognizing human hand signs instantly at a Wi-Fi frequency of 2.4 GHz. Instantaneous in situ full-scene imaging and adaptive recognition of hand signs and vital signs of multiple non-cooperative people were experimentally demonstrated. We also show that the proposed intelligent metasurface system works well even when it is passively excited by stray Wi-Fi signals that ubiquitously exist in our daily lives. The reported strategy could open up a new avenue for future smart cities, smart homes, human-device interaction interfaces, health monitoring, and safety screening free of visual privacy issues.

5.
Opt Lett ; 43(22): 5615-5618, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30439908

RESUMO

We report the development of, to the best of our knowledge, a novel supercritical focusing coherent anti-Stokes Raman scattering (SCF-CARS) microscopy for high-resolution vibrational imaging. Two optimized phase patterns with a combination of concentric rings with an alternative 0 and π phase are generated by using a spatial light modulator and applied to the pump beam for minimizing its focal spot size. One of the phase patterns is for both the lateral and axial resolution enhancement, and the other can further improve the lateral resolution, but it sacrifices the axial resolution to some extent. We demonstrate this high-resolution SCF-CARS microscopy technique by imaging the polymethyl methacrylate (PMMA) nano-cylinder on a microscope slide and glass-air interface, as well as biomedical samples, for example, tooth.

6.
Light Sci Appl ; 7: 63, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30245810

RESUMO

With the rapid progress in computer science, including artificial intelligence, big data and cloud computing, full-space spot generation can be pivotal to many practical applications, such as facial recognition, motion detection, augmented reality, etc. These opportunities may be achieved by using diffractive optical elements (DOEs) or light detection and ranging (LIDAR). However, DOEs suffer from intrinsic limitations, such as demanding depth-controlled fabrication techniques, large thicknesses (more than the wavelength), Lambertian operation only in half space, etc. LIDAR nevertheless relies on complex and bulky scanning systems, which hinders the miniaturization of the spot generator. Here, inspired by a Lambertian scatterer, we report a Hermitian-conjugate metasurface scrambling the incident light to a cloud of random points in full space with compressed information density, functioning in both transmission and reflection spaces. Over 4044 random spots are experimentally observed in the entire space, covering angles at nearly 90°. Our scrambling metasurface is made of amorphous silicon with a uniform subwavelength height, a nearly continuous phase coverage, a lightweight, flexible design, and low-heat dissipation. Thus, it may be mass produced by and integrated into existing semiconductor foundry designs. Our work opens important directions for emerging 3D recognition sensors, such as motion sensing, facial recognition, and other applications.

7.
ACS Nano ; 12(9): 8847-8854, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30112908

RESUMO

Nanoprint-based color display using either extrinsic structural colors or intrinsic emission colors is a rapidly emerging research field for high-density information storage. Nevertheless, advanced applications, e. g., dynamic full-color display and secure information encryption, call for demanding requirements on in situ color change, nonvacuum operation, prompt response, and favorable reusability. By transplanting the concept of electrical/chemical doping in the semiconductor industry, we demonstrate an in situ reversible color nanoprinting paradigm via photon doping, triggered by the interplay of structural colors and photon emission of lead halide perovskite gratings. It solves the aforementioned challenges at one go. By controlling the pumping light, the synergy between interlaced mechanisms enables color tuning over a large range with a transition time on the nanosecond scale in a nonvacuum environment. Our design presents a promising realization of in situ dynamic color nanoprinting and will empower the advances in structural color and classified nanoprinting.

8.
Sci Adv ; 3(10): e1701398, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29043295

RESUMO

In the era of big data, there exists a growing gap between data generated and storage capacity using two-dimensional (2D) magnetic storage technologies (for example, hard disk drives), because they have reached their performance saturation. 3D volumetric all-optical magnetic holography is emerging rapidly as a promising road map to realizing high-density capacity for its fast magnetization control and subwavelength magnetization volume. However, most of the reported light-induced magnetization confronts the problems of impurely longitudinal magnetization, diffraction-limited spot, and uncontrollable magnetization reversal. To overcome these challenges, we propose a novel 3D light-induced magnetic holography based on the conceptual supercritical design with multibeam combination in the 4π microscopic system. We theoretically demonstrate a 3D deep super-resolved [Formula: see text] purely longitudinal magnetization spot by focusing six coherent circularly polarized beams with two opposing high numerical aperture objectives, which allows 3D magnetic holography with a volumetric storage density of up to 1872 terabit per cubic inches. The number and locations of the super-resolved magnetization spots are controllable, and thus, desired magnetization arrays in 3D volume can be produced with properly designed phase filters. Moreover, flexible magnetization reversals are also demonstrated in multifocal arrays by using different illuminations with opposite light helicity. In addition to data storage, this magnetic holography may find applications in information security, such as identity verification for a credit card with magnetic stripe.

9.
ACS Nano ; 11(2): 1728-1735, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28094509

RESUMO

Vibration is one of the most common energy sources in ambient environment. Harvesting vibration energy is a promising route to sustainably drive small electronics. This work introduces an approach to scavenge vibrational energy over a wide frequency range as an exclusive power source for continuous operation of electronics. An elastic multiunit triboelectric nanogenerator (TENG) is rationally designed to efficiently harvest low-frequency vibration energy, which can provide a maximum instantaneous output power density of 102 W·m-3 at as low as 7 Hz and maintain its stable current outputs from 5 to 25 Hz. A self-charging power unit (SCPU) combining the TENG and a 10 mF supercapacitor gives a continuous direct current (DC) power delivery of 1.14 mW at a power management efficiency of 45.6% at 20 Hz. The performance of the SCPU can be further enhanced by a specially designed power management circuit, with a continuous DC power of 2 mW and power management efficiency of 60% at 7 Hz. Electronics such as a thermometer, hygrometer, and speedometer can be sustainably powered solely by the harvested vibration energy from a machine or riding bicycle. This approach has potential applications in self-powered systems for environment monitoring, machine safety, and transportation.

10.
Sci Rep ; 6: 38794, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27958309

RESUMO

Supercapacitors (SCs) are a type of energy storage device with high power density and long lifecycles. They have widespread applications, such as powering electric vehicles and micro scale devices. Working stability is one of the most important properties of SCs, and it is of significant importance to investigate the operational characteristics of SCs working under extreme conditions, particularly during high-g acceleration. In this paper, the failure mechanism of SCs upon high-g impact is thoroughly studied. Through an analysis of the intrinsic reaction mechanism during the high-g impact, a multi-faceted physics model is established. Additionally, a multi-field coupled kinetics simulation of the SC failure during a high-g impact is presented. Experimental tests are conducted that confirm the validity of the proposed model. The key factors of failure, such as discharge currents and discharging levels, are analyzed and discussed. Finally, a possible design is proposed to avoid the failure of SCs upon high-g impact.

11.
BMC Plant Biol ; 15: 219, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26362323

RESUMO

BACKGROUND: Mechanical wounding can cause morphological and developmental changes in plants, which may affect the responses to abiotic stresses. However, the mechano-stimulation triggered regulation network remains elusive. Here, the mechano-stimulation was applied at two different times during the growth period of wheat before exposing the plants to cold stress (5.6 °C lower temperature than the ambient temperature, viz., 5.0 °C) at the jointing stage. RESULTS: Results showed that mechano-stimulation at the Zadoks growth stage 26 activated the antioxidant system, and substantially, maintained the homeostasis of reactive oxygen species. In turn, the stimulation improved the electron transport and photosynthetic rate of wheat plants exposed to cold stress at the jointing stage. Proteomic and transcriptional analyses revealed that the oxidative stress defense, ATP synthesis, and photosynthesis-related proteins and genes were similarly modulated by mechano-stimulation and the cold stress. CONCLUSIONS: It was concluded that mechano-stimulated modifications of the chloroplast antioxidant system and proteome changes are related to cold tolerance in wheat. The findings might provide deeper insights into roles of reactive oxygen species in mechano-stimulated cold tolerance of photosynthetic apparatus, and be helpful to explore novel approaches to mitigate the impacts of low temperature occurring at critical developmental stages.


Assuntos
Antioxidantes/metabolismo , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Temperatura Baixa , Proteoma/metabolismo , Triticum/fisiologia , Estresse Fisiológico , Triticum/genética
12.
Opt Express ; 22(3): 3514-25, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24663641

RESUMO

A conformal dome optical system was established and aberration characteristics of the dome were investigated using Zernike aberration theory. The conformal dome was designed with gradient index element. The designing method was introduced and the optimizing results were analyzed in detail. The results show that the Zernike aberrations produced by the conformal dome decreased dramatically. Also, a complete conformal optical system was designed to further illustrate the aberration correction effect of gradient index elements. The results show that the utilization of gradient index optical elements not only improves the imaging quality, but also simplifies the structure of the conformal optical system.

13.
Appl Opt ; 52(33): 7889-98, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24513738

RESUMO

We investigated the influences exerted by the nonuniform aerodynamic flow field surrounding the optical window on the imaging quality degradation of an airborne optical system. The density distribution of flow fields around three typical optical windows, including a spherical window, an ellipsoidal window, and a paraboloidal window, were calculated by adopting the Reynolds-averaged Navier-Stokes equations with the Spalart-Allmaras model provided by FLUENT. The fourth-order Runge-Kutta algorithm based ray-tracing program was used to simulate the optical transmission through the aerodynamic flow field. Four kinds of imaging quality evaluation parameters were presented: wave aberration of the entrance pupil, point spread function, encircled energy, and modulation transfer function. The results show that the imaging quality of the airborne optical system was affected by the shape of the optical window and angle of attack of the aircraft.

14.
Appl Opt ; 51(36): 8625-36, 2012 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-23262604

RESUMO

We investigated the joint influences exerted by the nonuniform aerodynamic flow field surrounding the optical dome and the aerodynamic heating of the dome on imaging quality degradation of an airborne optical system. The Spalart-Allmaras model provided by FLUENT was used for flow computations. The fourth-order Runge-Kutta algorithm based ray tracing program was used to simulate optical transmission through the aerodynamic flow field and the dome. Four kinds of imaging quality evaluation parameters were presented: wave aberration of the exit pupil, point spread function, encircled energy, and modulation transfer function. The results show that the aero-optical disturbance of the aerodynamic flow field and the aerodynamic heating of the dome significantly affect the imaging quality of an airborne optical system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...