Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(12)2023 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-38138329

RESUMO

With the development of society and the advancement of technology, the emergence of the Internet of Things (IoT) has changed people's lifestyles and raised the demand for energy to a new level. However, there are some drawbacks in terms of energy supply for IoT sensors, such as limited battery capacity and limitations in replacement and maintenance. Therefore, it has become urgent to develop a sustainable green energy source (wind energy) using the surrounding environment. Meanwhile, triboelectric nanogenerators (TENGs) with advantages such as flexible structure, low manufacturing cost, and environmental friendliness provide enormous potential for constructing self-powered sensing systems. In this work, we present a novel coaxial rolling charge pump TENG (CR-TENG) based on wind energy to enhance the output performance and durability. The rolling friction charge pump TENG directly injects positive and negative charges into the main TENG, which is more wear-resistant compared to sliding friction, and greatly increases the charge density and output power. In addition, the charge pumping part and the main TENG adopt the coaxial design, reducing the complexity of the structural design. On comparing the output performance of the CR-TENG under the initial state, rectifier bridge supplemental charge strategy, and charge pump supplemental charge strategy, results shown that the output voltage performance of the CR-TENG can be improved by 5800% under the charge pump supplemental charge strategy. Moreover, the output performance of the CR-TENG remains stable after 72,000 cycles. The output power of the CR-TENG can reach 1.21 mW with a load resistance of 3 × 107 Ω. And the CR-TENG can charge a 0.1 µF capacitor to 5 V in just 1.6 s. This work provides new insights for the rotary durable high output charge pump compensating a triboelectric nanogenerator and demonstrates the important potential of harvesting environmental energy to supply intelligent IoT nodes.

2.
Micromachines (Basel) ; 14(2)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36837998

RESUMO

Wind energy as a renewable energy source is easily available and widely distributed in cities. However, current wind-energy harvesters are inadequate at capturing energy from low-speed winds in urban areas, thereby limiting their application in distributed self-powered sensor networks. A triboelectric-electromagnetic hybrid harvester with a low startup wind speed (LSWS-TEH) is proposed that also provides output power within a wide range of wind speeds. An engineering-implementable propeller design method is developed to reduce the startup wind speed of the harvester. A mechanical analysis of the aerodynamics of the rotating propeller is performed, and optimal propeller parameter settings are found that greatly improved its aerodynamic torque. By combining the high-voltage output of the triboelectric nanogenerator under low-speed winds with the high-power output of the electromagnetic generator under high-speed winds, the harvester can maintain direct current output over a wide wind-speed range after rectification. Experiments show that the harvester activates at wind speeds as low as 1.2 m/s, powers a sensor with multiple integrated components in 1.7 m/s wind speeds, and drives a Bluetooth temperature and humidity sensor in 2.7 m/s wind speeds. The proposed small, effective, inexpensive hybrid energy harvester provides a promising way for self-powered requirements in smart city settings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...