Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 2750, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980819

RESUMO

S-acylation is a reversible protein post-translational modification mediated by protein S-acyltransferases (PATs). How S-acylation regulates plant innate immunity is our main concern. Here, we show that the plant immune receptor P2K1 (DORN1, LecRK-I.9; extracellular ATP receptor) directly interacts with and phosphorylates Arabidopsis PAT5 and PAT9 to stimulate their S-acyltransferase activity. This leads, in a time-dependent manner, to greater S-acylation of P2K1, which dampens the immune response. pat5 and pat9 mutants have an elevated extracellular ATP-induced immune response, limited bacterial invasion, increased phosphorylation and decreased degradation of P2K1 during immune signaling. Mutation of S-acylated cysteine residues in P2K1 results in a similar phenotype. Our study reveals that S-acylation effects the temporal dynamics of P2K1 receptor activity, through autophosphorylation and protein degradation, suggesting an important role for this modification in regulating the ability of plants in respond to external stimuli.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Imunidade Vegetal , Proteínas Quinases/metabolismo , Acilação , Aciltransferases/genética , Aciltransferases/imunologia , Aciltransferases/metabolismo , Trifosfato de Adenosina/imunologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/imunologia , Mutação , Fosforilação , Plantas Geneticamente Modificadas , Ligação Proteica , Proteínas Quinases/genética , Proteínas Quinases/imunologia , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2/imunologia , Receptores Purinérgicos P2/metabolismo , Transdução de Sinais , Fatores de Tempo
2.
Mol Plant Microbe Interact ; 33(7): 996-1006, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32196398

RESUMO

Tobacco mosaic virus (TMV) infection can causes serious damage to tobacco crops. To explore the approach of preventing TMV infection of plants, two tobacco cultivars with different resistances to TMV were used to analyze transcription profiling before and after TMV infection. The involvement of biological pathways differed between the tolerant variety (Yuyan8) and the susceptible variety (NC89). In particular, the plant-virus interaction pathway was rapidly activated in Yuyan8, and specific resistance genes were enriched. Liquid chromatography tandem mass spectrometry analysis detected large quantities of antiviral substances in the tolerant Yuyan8. A novel Nicotiana tabacum leucine-rich repeat receptor kinase (NtLRR-RLK) gene was identified as being methylated and this was verified using bisulfite sequencing. Transient expression of TMV-green fluorescent protein in pRNAi-NtLRR-RLK transgenic plants confirmed that NtLRR-RLK was important for susceptibility to TMV. The specific protein interaction map generated from our study revealed that levels of BIP1, E3 ubiquitin ligase, and LRR-RLK were significantly elevated, and all were represented at node positions in the protein interaction map. The same expression tendency of these proteins was also found in pRNAi-NtLRR-RLK transgenic plants at 24 h after TMV inoculation. These data suggested that specific genes in the infection process can activate the immune signal cascade through different resistance genes, and the integration of signal pathways could produce resistance to the virus. These results contribute to the overall understanding of the molecular basis of plant resistance to TMV and in the long term could identify new strategies for prevention and control virus infection.


Assuntos
Resistência à Doença/genética , Nicotiana/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinases/genética , Vírus do Mosaico do Tabaco/patogenicidade , Proteínas de Transporte , Doenças das Plantas/microbiologia , Imunidade Vegetal , Plantas Geneticamente Modificadas/microbiologia , Transdução de Sinais , Nicotiana/microbiologia
3.
Front Plant Sci ; 8: 2263, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29379516

RESUMO

Topping damage can induce the nicotine synthesis in tobacco roots, which involves the activation of JA and auxin signal transduction. It remains unclear how these hormone signals are integrated to regulate nicotine synthesis. Here we isolated a transcription factor NtWRKY-R1 from the group IIe of WRKY family and it had strong negative correlation with the expression of putrescine N-methyltransferase, the key enzyme of nicotine synthesis pathway. NtWRKY-R1 was specifically and highly expressed in tobacco roots, and it contains two transcriptional activity domains in the N- and C-terminal. The promoter region of NtWRKY-R1 contains two cis-elements which are responding to JA and auxin signals, respectively. Deletion of NtWRKY-R1 promoter showed that JA and auxin signals were subdued by NtWRKY-R1, and the expression of NtWRKY-R1 was more sensitive to auxin than JA. Furthermore, Yeast two-hybrid experiment demonstrated that NtWRKY-R1 can interact with the actin-binding protein. Our data showed that the intensity of JA and auxin signals can be translated into the expression of NtWRKY-R1, which regulates the balance of actin polymerization and depolymerization through binding actin-binding protein, and then regulates the expression of genes related to nicotine synthesis. The results will help us better understand the function of the WRKY-IIe family in the signaling crosstalk of JA and auxin under damage stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...