Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(37): 17316-17328, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39221825

RESUMO

Developing low-cost and multifunctional adsorbents for adsorption separation to obtain high-purity (>99.9%) gases is intriguing yet challenging. Notably, the ongoing trade-off between adsorption capacity and selectivity in separating multicomponent mixed gases still persists as a pressing scientific challenge requiring urgent attention. Herein, the ultrastable TJT-100 exhibits unique structural characteristics including uncoordinated carboxylate oxygen atoms, coordinated water molecules directed toward the pore surface, and sufficient Me2NH2+ cations in channels. TJT-100 exhibits a high adsorption capacity and exceptional separation performance, particularly notable for its high C2H2 capacity of 127.7 cm3/g and remarkable C2H2 selectivity over CO2 (5.4) and CH4 (19.8), which makes it a standout material for various separation applications. In a breakthrough experiment with a C2H2/CO2 mixture (v/v = 50/50), TJT-100 achieved a record-high C2H2 productivity of 69.33 L/kg with a purity of 99.9%. Additionally, TJT-100 demonstrates its effectiveness in separating CO2 from natural gas and flue gas. Its exceptional selectivity for CO2/CH4 (10.7) and CO2/N2 (11.9) results in a high CO2 productivity of 21.23 and 22.93 L/kg with 99.9% purity from CO2/CH4 (v/v = 50/50) and CO2/N2 (v/v = 15/85) mixtures, respectively.

2.
Inorg Chem ; 63(36): 16897-16907, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39197012

RESUMO

Exploiting a photocatalyst with high stability and excellent activity for Cr(VI) reduction under mild conditions is crucial yet challenging. Herein, the rigid aromatic multicarboxylate ligand with chromophore anthracene was selected to coordinate with multivalent metal ion manganese and to obtain a stable two-dimensional (2D) Mn-based metal-organic framework (MOF), LCUH-120, which can efficiently and quickly convert Cr(VI) into Cr(III) under light without the need for any additional photosensitizer. The efficient photosensitive anthracene group serves as a photosensitizer center and multivalent Mn(II) ion as a photocatalyst center in LCUH-120, and the conversion of Cr(VI) to Cr(III) can be realized completely in just 40 min. Specifically, the rate constant (k) and reduction rate of the Cr(VI) photocatalytic reaction can be high up to 0.134 min-1 and 2.50 mgCr(VI) g-1cata min-1 in an acidic environment (pH = 2), respectively. Compared to our previously reported three-dimensional (3D) Sm-MOF, LCUH-120 exhibits a significantly higher catalytic reaction rate, which might be ascribed to the fact that the photocatalyst center Mn node can improve the rate of electron transfer and promote the separation of holes and photogenerated electrons. In an acidic environment, the reaction mechanism can be verified through various contrast experiments and theoretical simulations.

3.
Inorg Chem ; 63(4): 1962-1973, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38236237

RESUMO

One 3D Cd-MOF, namely, {[(HDMA)2][Cd3(L)2]·5H2O·2DMF}n (LCU-124, LCU indicates Liaocheng University), was synthesized from an ether-containing ligand 1,3-bis(3,5-dicarboxylphenoxy)benzene (H4L). Its Ln3+-postmodified samples, Eu3+@LCU-124 and Tb3+@LCU-124, were obtained through cation exchange of dimethylamine cation (HDMA) with Eu3+ and Tb3+. The successful entry of rare earth into LCU-124 by cation exchange modification was verified by IR, XRD, XPS, EDS mapping, and luminescence spectra. The proportion of Eu3+/Tb3+ was adjusted during the modification process, leading to fluorescent materials with different emissions. Luminescence measurements indicated that these complexes exhibited interesting multiresponsive sensing activities toward biomarkers urine acid (UA), quinine (QN), and quinidine (QND). First, LCU-124 has a pronounced quenching effect toward UA with the detection limit of 31.01 µM. After modification, the visualization of the detection was improved significantly and the detection limit of Eu3+@LCU-124 was reduced to 0.868 µM. Second, when QN and QND were present in the suspensions of Eu3+@LCU-124 and Tb3+@LCU-124, strong blue light emission peaks occurred, while the characteristic emission of Eu3+/Tb3+ decreased, forming ratiometric fluorescent sensors with the detection limit in the range of 0.199-9.49 µM. The fluorescent probes have high selectivity, excellent sensitivity recycling, and fast response time (less than 1 min). Besides, a simple logic gate circuit and a range of luminescent mixed matrix membranes were designed to provide simple and fast detection of above biomarkers. Our work indicated that modification of Eu3+/Tb3+ could improve the detection ability significantly.

4.
Langmuir ; 40(4): 2385-2395, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38237570

RESUMO

The separation of C8 aromatic isomers (oX: o-xylene, pX: p-xylene, mX: m-xylene, and EB: ethylbenzene) remains an enormous challenge in industrial production due to their similar molecular structures and physical properties. Porous materials with suitable pore structures and selective recognition sites to discriminate the slight structural differences of isomers are imminently needed. In this paper, MIL-47(V) with a three-dimensional (3D) grid structure of 10.5 × 10.5 Å2 and a one-dimensional (1D) diamond channel was selected as the adsorbent. However, the mechanism of the adsorption and separation of C8 aromatic isomers in porous materials still needs to be understood. Given the importance of C8 aromatic isomers' confinement in MIL-47(V) for adsorption and diffusion applications, it is important to understand C8 aromatic isomers' behavior in MIL-47(V). Here, we demonstrated from a simulation perspective that metal-organic frameworks MIL-47(V) with one-dimensional (1D) diamond channels can identify C8 aromatic isomers. Molecular dynamics (MD) simulations have shown that organic ligands with guest response sites of MIL-47(V) can effectively distinguish between C8 aromatic isomers by adaptation to the shape of a specific isomer. MIL-47(V) has high adsorption and an excellent separation sequence between C8 aromatic isomers: oX > pX ≈ mX > EB. Significant differences exist in π-π superposition interactions between C8 aromatic isomers and between C8 aromatic isomers and the skeletons. This phenomenon is mainly caused by the unique pore structure and guest response characteristics of MIL-47(V). This work is identified as a supplementary instruction to experimental research and is expected to provide profound insights into research on developing C8 aromatic isomers' adsorption and separation and theoretical support.

5.
Langmuir ; 40(1): 938-949, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38134444

RESUMO

The superamphiphiles exhibit broad prospects for fabricating stimuli-responsive emulsions. Because the superamphiphiles are assembled via noncovalent interactions, they have the advantage of fast response and high efficiency. Recently, a series of switchable emulsions using CO2-responsive superamphiphiles have been developed, which extends the applications of CO2-responsive materials in widespread field. However, there is still a lack of fundamental understanding on the switching mechanism related to the assembled structure of superamphiphiles at the oil-water interface. We employed molecular dynamics (MD) simulations to investigate the reversible emulsification/demulsification process of a responsive emulsion system stabilized by a recently developed responsive superamphiphile (BTOA), which consists of oleic acid (OA) and cationic amine (named 1,3-bis(aminopropyl)tetramethyldisiloxane, BT). The simulation results present the morphologies in both the emulsion and demulsification states. It is found that the ionized OA- and the protonated BT+ together form an adsorption layer at the oil-water interface. The hydrophobic parts of BT+ are inserted into the adsorption layer, and the two amine groups contact the water phase. This adsorption layer reduces the interfacial tension and stabilizes the emulsion. After the bubbling of CO2, the surfactants were fully protonated to OA and BT2+. Because of the changes in the molecular polarity, OA and BT2+ entered the oil and water phases, respectively, resulting in demulsification. The structural and dynamical properties were analyzed to reveal the different intermolecular interactions that were responsible for the reversible reversibility of the emulsion. The observations are considered to be complementary to experimental studies and are expected to provide deeper insights into studies on developing responsive materials via supramolecular assemblies.

6.
Inorg Chem ; 62(49): 20325-20339, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38015879

RESUMO

The design and development of proton conduction materials for clean energy-related applications is obviously important and highly desired but challenging. An ultrastable cobalt-based metal-organic framework Co-MOF, formulated as [Co2(btzip)2(µ2-OH2)] (namely, LCUH-103, H2btzip = 4, 6-bis(triazol-1-yl)-isophthalic acid) had been successfully synthesized via the hydrothermal method. LCUH-103 exhibits a three-dimensional framework and a one-dimensional microporous channel structure with scu topology based on the binuclear metallic cluster {Co2}. LCUH-103 indicated excellent chemical and thermal stability; peculiarly, it can retain its entire framework in acid and alkali solutions with different pH values for 24 h. The excellent stability is a prerequisite for studying its proton conductivity, and its proton conductivity σ can reach up to 1.25 × 10-3 S·cm-1 at 80 °C and 100% relative humidity (RH). In order to enhance its proton conductivity, the proton-conducting material Im@LCUH-103 had been prepared by encapsulating imidazole molecules into the channels of LCUH-103. Im@LCUH-103 indicated an excellent proton conductivity of 3.18 × 10-2 S·cm-1 at 80 °C and 100% RH, which is 1 order of magnitude higher than that of original LCUH-103. The proton conduction mechanism was systematically studied by various detection means and theoretical calculations. Meanwhile, LCUH-103 is also an excellent carrier for palladium nanoparticles (Pd NPs) via a wetness impregnation strategy, and the nitrophenols (4/3/2-NP) reduction in aqueous solution by Pd@LCUH-103 indicated an outstanding conversion efficiency, high rate constant (k), and exceptional cycling stability. Specifically, the k value of 4-NP reduction by Pd@LCUH-103 is superior to many other reported catalysts, and its k value is as high as 1.34 min-1 and the cycling stability can reach up to 6 cycles. Notably, its turnover frequency (TOF) value is nearly 196.88 times more than that of Pd/C (wt 5%) in the reaction, indicating its excellent stability and catalytic activity.

7.
Inorg Chem ; 62(34): 13832-13846, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37591631

RESUMO

The discharge of harmful and toxic pollutants in water is destroying the ecosystem balance and human being health at an alarming rate. Therefore, the detection and removal of water pollutants by using stable and efficient materials are significant but challenging. Herein, three novel lanthanide metal-organic frameworks (Ln-MOFs), [La(L)(DMF)2(H2O)2]·H2O (LCUH-104), [Nd(L)(DMF)2(H2O)2]·H2O (LCUH-105), and [Pr(L)(DMF)2(H2O)2]·H2O (LCUH-106) [H3L = 5-(4-(tetrazol-5-yl)phenyl)isophthalic acid (H3TZI)] were solvothermally constructed and structurally characterized. In the three Ln-MOFs, dinuclear metallic clusters {Ln2} were connected by deprotonated tetrazol-containing dicarboxylate TZI3- to obtain a 2D layered framework with a point symbol of {42·84}·{46}. Their excellent chemical and thermal stabilities were beneficial to carry out fluorescence sensing and achieve the catalytic nitrophenols (NPs) reduction. Especially, the incorporation of the nitrogen-rich tetrazole ring into their 2D layered frameworks enables the fabrication of Pd nanocatalysts (Pd NPs@LCUH-104/105/106) and have dramatically enhanced catalytic activity by using the unique metal-support interactions between three Ln-MOFs and the encapsulating palladium nanoparticles (Pd NPs). Specifically, the reduction of NPs (2-NP, 3-NP, and 4-NP) in aqueous solution by Pd NPs@LCUH-104 exhibits exceptional conversion efficiency, remarkable rate constants (k), and outstanding cycling stability. The catalytic rate of Pd NPs@LCUH-104 for 4-NP is nearly 8.5 times more than that of Pd/C (wt 5%) and its turnover frequency value is 0.051 s-1, which indicate its excellent catalytic activity. Meanwhile, LCUH-105, as a multifunctional fluorescence sensor, exhibited excellent fluorescence detection of norfloxacin (NFX) (turn on) and Cr2O72- (turn off) with high selectivity and sensitivity at a low concentration, and the corresponding fluorescence enhancement/quenching mechanism has also been systematically investigated through various detection means and theoretical calculations.

8.
Inorg Chem ; 62(14): 5757-5771, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36966509

RESUMO

The rational design and preparation of stable and multifunctional metal-organic frameworks (MOFs) with excellent catalysis and adsorption properties are desirable but are great challenges. The nitrophenol (NP) reduction to aminophenols (APs) by using the catalyst Pd@MOFs is an effective strategy, which has attracted extensive attention in recent years. Here, we report four stable isostructural two-dimensional (2D) rare earth metal-organic frameworks [RE4(AAPA)6(DMA)2 (H2O)4][DMA]3[H2O]8 (namely LCUH-101, RE = Eu, Gd, Tb, Y; AAPA2- = 5-[(anthracen-9-yl-methyl)-amino]-1,3-isophthalate), which feature a 2D layer structure with sql topology of point symbol {44·62} and exhibit excellent chemical stability and thermostability. The as-synthesized Pd@LCUH-101 was utilized for the catalytic reduction of 2/3/4-nitrophenol, which indicates high catalytic activity and recyclability attributed to the synergistic effect between Pd nanoparticles and the 2D layered structure. Of note, the turnover frequency (TOF), the reaction rate constant (k), and the activation energy (Ea) of Pd@LCUH-101 (Eu) in the reduction of 4-NP, respectively, are 1.09 s-1, 2.17 min-1, and 50.2 kJ·mol-1, which show that it has superior catalytic activity. Remarkably, LCUH-101 (Eu, Gd, Tb, and Y) are multifunctional MOFs that can effectively absorb and separate mixed dyes. The appropriate interlayer spacing enables them to efficiently adsorb methylene blue (MB) and rhodamine B (RhB) in aqueous solution, with adsorption capacities of 0.97 and 0.41 g·g-1, respectively, which is one of the highest values among those of the reported MOF-based adsorbers. Meanwhile, LCUH-101 (Eu) can be used for the separation of the dye mixture MB/MO and RhB/MO, and the excellent reusability enables LCUH-101 (Eu) to be used as chromatographic column filters to quickly separate and recover dyes. Therefore, this work provides a new strategy for the exploitation of stable and efficient catalysts for NP reduction and adsorbents for dyes.

9.
ACS Appl Mater Interfaces ; 15(2): 2940-2950, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36598797

RESUMO

The cathodic product Li2CO3, due to its high decomposition potential, has hindered the practical application of rechargeable Li-CO2/O2 batteries. To overcome this bottleneck, a Pt/FeNC cathodic catalyst is fabricated by dispersing Pt nanoparticles (NPs) with a uniform size of 2.4 nm and 8.3 wt % loading amount into a porous microcube FeNC support for high-performance rechargeable Li-CO2/O2 batteries. The FeNC matrix is composed of numerous two-dimensional (2D) carbon nanosheets, which is derived from an Fe-doping zinc metal-organic framework (Zn-MOF). Importantly, using Pt/FeNC as the cathodic catalyst, the Li-CO2/O2 (VCO2/VO2 = 4:1) battery displays the lowest overpotential of 0.54 V and a long-term stability of 142 cycles, which is superior to batteries with FeNC (1.67 V, 47 cycles) and NC (1.87 V, 23 cycles) catalysts. The FeNC matrix and Pt NPs can exert a synergetic effect to decrease the decomposition potential of Li2CO3 and thus enhance the battery performance. In situ Fourier transform infrared (FTIR) spectroscopy further confirms that Li2CO3 can be completely decomposed under a low potential of 3.3 V using the Pt/FeNC catalyst. Impressively, Li2CO3 exhibits a film structure on the surface of the Pt/FeNC catalysts by scanning electron microscopy (SEM), and its size can be limited by the confined space between the carbon sheets in Pt/FeNC, which enlarges the better contacting interface. In addition, density functional theory (DFT) calculations reveal that the Pt and FeNC catalysts show a higher adsorption energy for Li2CO3 and Li2CO4 intermediates compared to the NC catalyst, and the possible discharge pathways are deeply investigated. The synergetic effect between the FeNC support and Pt active sites makes the Li-CO2/O2 battery achieve optimal performance.

10.
Inorg Chem ; 61(40): 15880-15894, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36154014

RESUMO

Three novel porous transition-metal-organic frameworks (TM-OFs), formulated as [Co3(DCPN)2(µ2-OH2)4(H2O)4](DMF)2 (1), [Cd3(DCPN)2(µ2-OH2)4(H2O)4](DMF)2 (2), and [CdK(DCPN)(DMA)] (3), have been successfully prepared via solvothermal conditions based on a 5-(3',6'-dicarboxylic phenyl) nicotinic carboxylic acid (H3DCPN) ligand. 1 and 2 both have the same porous 3D network structure with the point symbol of {410·614·84}·{45·6}2 based on trinuclear ({Co3} or {Cd3}) clusters, indicating a one-dimensional porous channel, and possess excellent water and thermal stability; 3 also displays a porous 3D network structure with a 4-connected sra topology based on the heteronuclear metal cluster {CdK}. Complex 1 can be used to load Pd nanoparticles (Pd NPs) via a wetness impregnation strategy to obtain Pd@1. The reduction of nitrophenols (2-NP, 3-NP, 4-NP) by Pd@1 in aqueous solution shows outstanding conversion, excellent rate constants (k), and remarkable cycling stability due to the synergistic effect of complex 1 and Pd NPs. Luminescence sensing tests confirmed that 2 is a reliable multifunctional chemical sensor with high selectivity and sensitivity for low concentrations of Fe3+, Cr2O72-, CPFX, and NFX. Specifically, 2 shows a fluorescence enhancement behavior toward fluoroquinolone antibiotics (CPFX and NFX), which has not been reported previously in the literature. Moreover, the rational mechanism of fluorescence sensing was also systematically investigated by various detection means and theoretical calculations.


Assuntos
Estruturas Metalorgânicas , Antibacterianos , Cádmio , Ácidos Carboxílicos , Catálise , Fluoroquinolonas , Ligantes , Luminescência , Estruturas Metalorgânicas/química , Nitrofenóis , Água
11.
Inorg Chem ; 61(8): 3472-3483, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35148086

RESUMO

Eight new stable porous lanthanide metal-organic frameworks (Ln-OFs), namely, [Ln2(BPTC)2][(CH3)2NH2]2 [Ln = Ho (1), Eu (2), Gd (3), Dy (4), Er (5), Tm (6), Yb (7), Lu (8)], were prepared by 3,3',5,5'-biphenyltetracarboxylic acid (H4BPTC) and lanthanide ions by solvothermal reactions. Complexes 1-8 show a three-dimensional (3D) 6,6-connected network {412·63}·{48·66·8} topology based on binuclear (Ln2) clusters and feature a one-dimensional curving porous channel occupied by exchangeable dimethylamine cations ([(CH3)2NH2]+) in the 3D anionic frameworks. The occupied [(CH3)2NH2]+ in the anionic channels exhibited excellent ion-exchange ability, which is favorable to Pd2+ and cationic dye adsorption. Consequently, 1-8 were used to load Pd nanoparticles to catalyze the reduction of nitrophenols and adsorb and desorb methyl blue (MB). The catalytic reaction efficiencies of Pd@1-8 were higher than that of Pd/C (5 wt %) in the hydrogenation reaction of p-nitrophenol (p-NP). Moreover, Pd@1 exhibited good cycle stability and achieved nearly 100% p-NP conversion after eight cycles. Meanwhile, compound 1 also exhibited a high adsorption ability of MB, possessing an adsorption capacity of 1.41 g·g-1 (second only to 1.49 g·g-1 reported in the literature) selectively over rhodamine B (RhB) and methyl orange (MO) in aqueous solutions. Remarkably, the skeleton of 1 remained stable after four adsorption-desorption cycles of MB in aqueous solution.

12.
Dalton Trans ; 49(43): 15473-15480, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33141127

RESUMO

Two series of lanthanide-based metal-organic frameworks, namely {[Ln(BIPA-TC)0.5(DMA)2(NO3)]·DMA·H2O}n (1-Ln, Ln = Eu, Dy, Sm, Nd) and {[Ln2(BIPA-TC)1.5(DMA)3(H2O)2]·2DMA·2H2O}n (2-Ln, Ln = Eu, Dy, Sm, Nd), were successfully constructed via a solvent regulation strategy based on a π-electron rich tetra-carboxylate ligand (H4BIPA-TC). 1-Ln shows a 4-connected lvt topology with the point symbol of {42·84}, but 2-Ln displays a new 4,4,6-connected wxk1 topology with the point symbol of {43·83}4{46·66·83}2{86}. The solid-state luminescence property and the microporous nature of Eu-MOFs (1-Eu and 2-Eu) indicate that they can potentially be used as luminescent sensors. Fluorescence measurements indicate that Fe3+ exhibits the quenching effect for 1-Eu with the quenching efficiency of 93.1%. 2-Eu is the first MOF sensor for Mg2+ with the lowest detection limit of 1.53 × 10-10 mol L-1 and displays good recyclable capability. Simultaneously, in the presence of other metal ions (Ca2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Pd2+, Al3+, Cr3+and Fe3+), 2-Eu can maintain the selective sensing of Mg2+, indicating its potential for Mg2+ turn-on sensing.

13.
Acta Crystallogr C Struct Chem ; 76(Pt 9): 856-862, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32887855

RESUMO

The chemistry of transition-metal complexes with unusually high coordination numbers has been of interest because of their application in catalytic and biological systems. Deprotonation of the ionogenic tetradentate ligand 6,6'-bis(1H-tetrazol-5-yl)-2,2'-bipyridine [H2bipy(ttr)2] in the presence of iron(III) and tetra-n-butylammonium bromide, [n-Bu4N]Br, in solution resulted in the synthesis of a rare octacoordinated anionic mononuclear complex, tetra-n-butylammonium bis[6,6'-bis(tetrazol-1-id-5-yl)-2,2'-bipyridine]iron(III) methanol hemisolvate dihydrate, (C16H36N)[Fe(C12H6N10)2]·0.5CH3OH·2H2O or [n-Bu4N][Fe{bipy(ttr)2}2]·0.5CH3OH·2H2O (1), which has been structurally characterized by elemental analysis, powder X-ray diffraction (PXRD) and single-crystal X-ray diffraction. In 1, the coordination sphere of the iron(III) ion is a distorted bis-disphenoid dodecahedron, in which the eight coordination positions are occupied by eight N atoms from two independent tetradentate [bipy(ttr)2]2- anionic ligands, therefore forming the anionic [Fe{bipy(ttr)2}2]- unit, with the negative charge balanced by a free [n-Bu4N]+ cation. An investigation of the magnetic properties of 1 revealed a gradual incomplete spin-crossover behaviour below 150 K.

14.
RSC Adv ; 10(53): 32232-32240, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-35518171

RESUMO

With the careful modulation of the relative ratio of Y3+/Eu3+and Y3+/Tb3+, two series of bimetallic RE-CPs (Eu x Y1- x and Tb x Y1- x ) were successfully obtained through the isomorphous substitution method. Interestingly, the introduction of Y3+ ions does not change the fluorescence characteristic peak of 1-Eu and 1-Tb, but enhances its fluorescence lifetime and quantum yield. Experimental and theoretical simulation results show the co-doping process changes the intramolecular energy transfer process and reduces the non-radiative transition resulting from concentration quenching. Eu0.1Y0.9 and Tb0.1Y0.9 with the largest luminescence lifetime were selected as the representative research objects, their potential application for the detection of toxic metal ions and organic molecules was further investigated. Interestingly, Eu0.1Y0.9 and Tb0.1Y0.9 demonstrate high sensitivity and good selectivity towards Fe3+, Cr3+ and acetone. Besides, fine fluorescence visibility provides the necessary conditions for the preparation of simple and fast response fluorescent test papers in order to achieve real-time and convenient detection of these toxic materials.

15.
Acta Crystallogr C Struct Chem ; 75(Pt 2): 221-230, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30720462

RESUMO

A series of two-dimensional (2D) coordination polymers (CPs), namely poly[[bis(µ-acetato)diaqua(µ6-biphenyl-3,3',5,5'-tetracarboxylato)bis(N,N-dimethylacetamide)digadolinium(III)] N,N-dimethylacetamide monosolvate], {[Gd2(C16H6O8)(C2H3O2)2(C4H9NO)2(H2O)2]·C4H9NO}n (CP1), poly[[bis(µ-acetato)diaqua(µ6-biphenyl-3,3',5,5'-tetracarboxylato)bis(N,N-dimethylacetamide)didysprosium(III)] N,N-dimethylacetamide monosolvate], {[Dy2(C16H6O8)(C2H3O2)2(C4H9NO)2(H2O)2]·C4H9NO}n (CP2), poly[bis(µ-acetato)diaqua(µ6-biphenyl-3,3',5,5'-tetracarboxylato)bis(N,N-dimethylacetamide)dineodymium(III)], [Nd2(C16H6O8)(C2H3O2)2(C4H9NO)2(H2O)2]n (CP3), poly[bis(µ-acetato)diaqua(µ6-biphenyl-3,3',5,5'-tetracarboxylato)bis(N,N-dimethylacetamide)disamarium(III)], [Sm2(C16H6O8)(C2H3O2)2(C4H9NO)2(H2O)2]n (CP4), has been synthesized from rigid biphenyl-3,3',5,5'-tetracarboxylic acid under solvothermal conditions. Their structures have been determined by single-crystal X-ray diffraction analyses, elemental analyses, IR spectra, powder X-ray diffraction and thermogravimetric analyses, and CP1-CP4 crystallize in the monoclinic space group P21/n. CP1-CP4 are isomorphous and feature similar 2D double layers, which are further extended via interlayer hydrogen-bonding interactions into a three-dimensional (3D) supramolecular structure. Hydrogen-bonding interactions between N,N-dimethylacetamide molecules and carboxylate O atoms strengthen the packing of the layers. The organic ligands interconnect with metal ions to generate 2D layered structures with a (4,4)-connected net having {44.62} topology. CP1 has been investigated for its magnetic properties and magnetic susceptibility measurements were carried out in the range 2.0-300 K. The results of the magnetic measurements show weak antiferromagnetic coupling between the GdIII ions in CP1. Moreover, the strong luminescence of CP2 and CP4 can be selectively quenched by the Fe3+ ion and toxic solvents (e.g. acetone).

16.
Angew Chem Int Ed Engl ; 57(49): 16067-16071, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30338921

RESUMO

The removal of C2 H2 and C2 H6 from C2 H4 streams is of great significance for feedstock purification to produce polyethylene and other commodity chemicals but the simultaneous adsorption of C2 H6 and C2 H2 over C2 H4 from a ternary mixture has never been realized. Herein, a robust metal-organic framework, TJT-100, was designed and synthesized, which demonstrates remarkably selective adsorption of C2 H2 and C2 H6 over C2 H4 . Breakthrough experiments show that TJT-100 can be used as an adsorbent for high-performance purification of C2 H4 from a ternary mixture of C2 H2 /C2 H4 /C2 H6 (0.5:99:0.5) to afford a C2 H4 purity greater than 99.997 %, beyond that required for ethylene polymerization. Computational studies reveal that the uncoordinated carboxylate oxygen atoms and coordinated water molecules pointing towards the pore can trap C2 H2 and C2 H6 through the formation of multiple C-H⋅⋅⋅O electrostatic interactions, while the corresponding C2 H4 -framework interaction is unfavorable.

17.
Acta Crystallogr C Struct Chem ; 74(Pt 3): 386-391, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29504570

RESUMO

Two new two-dimensional lanthanide coordination polymers, namely poly[[tetra-µ2-acetato-tetraaquabis(µ4-biphenyl-3,3',5,5'-tetracarboxylato)tetrakis(dimethylacetamide)tetraterbium(III)] pentahydrate], {[Tb4(C16H6O8)2(C2H3O2)4(C4H9NO)4(H2O)4]·5H2O}n, (1), and poly[[tetra-µ2-acetato-tetraaquabis(µ5-biphenyl-3,3',5,5'-tetracarboxylato)tetrakis(dimethylacetamide)tetraeuropium(III)] tetrahydrate], {[Eu4(C16H6O8)2(C2H3O2)4(C4H9NO)4(H2O)4]·4H2O}n, (2), have been synthesized from biphenyl-3,3',5,5'-tetracarboxylic acid (H4bpt) and Ln(NO3)3·6H2O (Ln = Tb and Eu) under solvothermal conditions. Single-crystal X-ray structure analysis shows that the two compounds are isostructural and crystallize in the monoclinic P21/n space group. The crystal structures are constructed from bpt4- ligands (as linkers) and {Ln2(µ2-CH3COO)2} building units (as nodes), which topological analysis shows to be a (4,6)-connected network with sql topology. Compounds (1) and (2) have been characterized by elemental analysis, IR spectroscopy, powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA) and fluorescence analysis in the solid state. In addition, a magnetic investigation shows the presence of antiferromagnetic interactions in compound (1).

18.
Inorg Chem ; 57(3): 1342-1349, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29345923

RESUMO

Two robust metal-organic frameworks (MOFs), {H4[Ni(π-H2O)2]2[Ni(rt-H2O)2]8Ni4(Tri)24}[VIVW12O40]2·24H2O (1) and {H[Ni(π-O)2]2[Ni(rt-H2O)2]8Ni4(Tri)24}[VIVW10VV2O40V2][VIVW9VV3O40VIV2]·24H2O (2) (Tri = 1,2,4-triazole), composed of polyoxometalates (POMs) and metal-organic units, were designed and synthesized by a hydrothermal method. Structure analysis indicates that there is a metal-organic crown [{Ni3(Tri)6(H2O)4}4] ({Ni12}) in these two compounds. In 1, the {Ni12} crown embraces four pendant Tri ligands that could capture a cationic [Ni(H2O)2]2+ group, resulting in the Ni13-Tri building unit [Ni(H2O)2{Ni3(Tri)6(H2O)4}4] ({Ni13}). The {Ni13} building unit was fused together by Tri bridges into the 2D metal-organic layers, which are pillared by a typical Keggin-type POM [VW12O40]4- to construct a 3D supramolecular framework via the hydrogen bonds. Interestingly, the 2D metal-organic layer in 1 was successfully transferred into a 3D covalent MOF via extension of the length of the pillars by capping a Keggin-type POM with V-O units. Moreover, electrochemical behaviors and electrocatalytic properties of these two compounds were both studied, which can act as bifunctional electrocatalysts toward the reduction of H2O2 and oxidation of nitrite in neutral aqueous solution.

19.
R Soc Open Sci ; 4(12): 171409, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29308262

RESUMO

Three-dimensional (3D) graphene composites have drawn increasing attention in energy storage/conversion applications due to their unique structures and properties. Herein, we synthesized 3D honeycomb-like Ni3S2@graphene oxide composite (3D honeycomb-like Ni3S2@GO) by a one-pot hydrothermal method. We found that positive charges of Ni2+ and negative charges of NO3- in Ni(NO3)2 induced a transformation of graphene oxide with smooth surface into graphene oxide with wrinkled surface (w-GO). The w-GO in the mixing solution of Ni(NO3)2/thioacetamide/H2O evolved into 3D honeycomb-like Ni3S2@GO in solvothermal process. The GO effectively inhibited the aggregation of Ni3S2 nanoparticles. Photoelectrochemical cells based on 3D Ni3S2@GO synthesized at 60 mM l-1 Ni(NO3)2 exhibited the best energy conversion efficiency. 3D Ni3S2@GO had smaller charge transfer resistance and larger exchange current density than pure Ni3S2 for iodine reduction reaction. The cyclic stability of 3D honeycomb-like Ni3S2@GO was good in the iodine electrolyte. Results are of great interest for fundamental research and practical applications of 3D GO and its composites in solar water-splitting, artificial photoelectrochemical cells, electrocatalysts and Li-S or Na-S batteries.

20.
Dalton Trans ; 43(42): 15708-12, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25238057

RESUMO

Two Cu(II)-based MOFs have been constructed by synergistic assembly involving the mixed-ligand synthetic strategy and the solvent effect. Compound is a 3D structure and represents a cds topology, while compound displays a rare structure built by three distinct {Cu4} clusters as SBUs. Moreover, the magnetic properties of have been thoroughly investigated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA