Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(8): 4047-4055, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38354061

RESUMO

The rising top-down synthetic methodologies for transition metal single-atom catalysts (SACs) require controlled movement of metal atoms through the substrates; however, their direct transportation towards the ideal carrier remains a huge challenge. Herein, we showed a "top down" strategy for Co nanoparticles (NPs) to Co SA transformation by employing electrospun carbon nanofibers (CNFs) as atom carriers. Under high-temperature conditions, the Co atoms migrate from the surfaces of Co NPs and are then anchored by the surrounding carbon to form a Co-C3O1 coordination structure. The synthesized Co SAs/CNF electrocatalyst exhibits excellent electrocatalytic nitrate reduction reaction (NO3RR) activity with an NH3 yield of 0.79 mmol h-1 cm-2 and Faraday efficiency (FE) of 91.3% at -0.7 V vs. RHE in 0.1 M KNO3 and 0.1 M K2SO4 electrolytes. The in situ electrochemical characterization suggests that the NOH pathway is preferred by Co SAs/CNFs, and *NO hydrogenation and deoxygenation easily occur on Co SAs due to the small adsorption energy between Co SAs and *NO, as calculated by theoretical calculations. It is revealed that a small energy barrier (0.45 eV) for the rate determining step (RDS) ranges from *NO to *NOH and a strong capability for inhibiting hydrogen evolution (HER) significantly promotes the NH3 selectivity and activity of Co SAs/CNFs.

2.
ACS Nano ; 17(7): 6955-6965, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36967524

RESUMO

Controlling atomic adjustment of single-atom catalysts (SACs) can directly change its local configuration, regulate the energy barrier of intermediates, and further optimize reaction pathways. Herein, we report an atom manipulating process to synthesize Ni atoms stabilized on vanadium carbide (NiSA-VC) through a nanofiber-medium thermodynamically driven atomic migration strategy. Experimental and theoretical results systematically reveal the tunable migration pathway of Ni atom from Ni nanoparticles to neighboring N-doped carbon (NC) and finally to metal carbide that was obtained by regulating the competitive adsorption energies between VC and NC for capturing Ni atoms. For CO2-to-CO electroreduction, NiSA-VC exhibits an industrial current density of -180 mA cm-2 at -1.0 V vs reversible hydrogen electrode and the highest Faradaic efficiency for CO production (FECO) of 96.8% at -0.4 V vs RHE in a flow cell. Significant electron transfers occurring in NiSA-VC structures contribute to the activation of CO2, facilitate the reaction free energy, regulate *CO desorption as the rate-determining step, and promote the activity and selectivity. This study provides an understanding on how to design powerful SACs for electrocatalysis.

3.
Chem Commun (Camb) ; 59(6): 772-775, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36546427

RESUMO

FeCoNiMoRu/CNFs exhibits a small potential of 1.43 V vs. RHE (100 mA cm-2) and superior stability for 90 h toward urea electro-oxidation (UOR). In situ electrochemical Raman results strongly demonstrate the ensemble effects of the various metal sites on improving the UOR activity by co-stabilizing the important intermediates. This work will open new directions in the application of high-entropy alloys for small molecule oxidation reactions.

4.
Nat Commun ; 13(1): 2662, 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562523

RESUMO

High-entropy alloys have received considerable attention in the field of catalysis due to their exceptional properties. However, few studies hitherto focus on the origin of their outstanding performance and the accurate identification of active centers. Herein, we report a conceptual and experimental approach to overcome the limitations of single-element catalysts by designing a FeCoNiXRu (X: Cu, Cr, and Mn) High-entropy alloys system with various active sites that have different adsorption capacities for multiple intermediates. The electronegativity differences between mixed elements in HEA induce significant charge redistribution and create highly active Co and Ru sites with optimized energy barriers for simultaneously stabilizing OH* and H* intermediates, which greatly enhances the efficiency of water dissociation in alkaline conditions. This work provides an in-depth understanding of the interactions between specific active sites and intermediates, which opens up a fascinating direction for breaking scaling relation issues for multistep reactions.

5.
ACS Nano ; 16(2): 3251-3263, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35089016

RESUMO

Strain engineering in bimetallic alloy structures is of great interest in electrochemical CO2 reduction reactions (CO2RR), in which it simultaneously improves electrocatalytic activity and product selectivity by optimizing the binding properties of intermediates. However, a reliable synthetic strategy and systematic understanding of the strain effects in the CO2RR are still lacking. Herein, we report a strain relaxation strategy used to determine lattice strains in bimetal MNi alloys (M = Pd, Ag, and Au) and realize an outstanding CO2-to-CO Faradaic efficiency of 96.6% and show the outstanding activity and durability toward a Zn-CO2 battery. Molecular dynamics (MD) simulations predict that the relaxation of strained PdNi alloys (s-PdNi) is correlated with increases in synthesis temperature, and the high temperature activation energy drives complete atomic mixing of multiple metal atoms to allow for regulation of lattice strains. Density functional theory (DFT) calculations reveal that strain relaxation effectively improves CO2RR activity and selectivity by optimizing the formation energies of *COOH and *CO intermediates on s-PdNi alloy surfaces, as also verified by in situ spectroscopic investigations. This approach provides a promising approach for catalyst design, enabling independent optimization of formation energies of reaction intermediates to improve catalytic activity and selectivity simultaneously.

6.
Chem Commun (Camb) ; 57(78): 10027-10030, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34505604

RESUMO

We report a thermodynamically driven metal diffusion strategy for the controlled synthesis of high-entropy alloy (HEA) nanocrystals using electrospun carbon nanofibers (CNFs) as nanoreactors. This conceptual pathway is resistant to high temperatures and produces a series of medium-entropy alloy (MEA) and HEA nanocrystals supported on CNFs by adjusting the numbers and kinds of elements. The FeCoNiCrMn/CNFs obtained the lowest overpotential of 345 mV at 50 mA cm-2 compared to MEA. The operando electrochemical Raman results indicate that the enhanced electron transfer from low-electronegativity Fe, Ni, Cr and Mn to the orbit of the Co atom makes Co a local negative charge center, leading to the decrease in absorption energy of OH.

7.
ACS Appl Mater Interfaces ; 11(46): 43261-43269, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31646856

RESUMO

Developing highly efficient electrocatalysts while revealing the active site and reaction mechanism is essential for electrocatalytic water splitting. To overcome the number and location limitations of defects in the electrocatalyst induced by conventional transition-metal atom (e.g. Fe, Co, and Ni) surface doping, we report a facile strategy of substitution with lower electronegative vanadium in the cobalt carbide, leading to larger amounts of defects in the whole lattice. The self-supported and quantitatively substituted VxCo3-xC (0 ≤ x ≤ 0.80) was one-step synthesized in the electrospun carbon nanofibers (CNFs) through the solid-state reaction. Particularly, the V0.28Co2.72C/CNFs exhibit superior hydrogen evolution reaction and oxygen evolution reaction activity and deliver a current density of 10 mA cm-2 at 1.47 V as the alkaline electrolyzer, which is lower than the values for the Pt/C-Ir/C couple (1.60 V). The operando Raman spectra and density functional theory calculations show that the enhanced electron transfer from V to the orbit of the Co atom makes Co a local negative charge center and leads to a significant increase in efficiency for overall water splitting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...