Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38069011

RESUMO

Cruciferous plants manufacture glucosinolates (GSLs) as special and important defense compounds against insects. However, how insect feeding induces glucosinolates in Brassica to mediate insect resistance, and how plants regulate the strength of anti-insect defense response during insect feeding, remains unclear. Here, mustard (Brassica juncea), a widely cultivated Brassica plant, and beet armyworm (Spodoptera exigua), an economically important polyphagous pest of many crops, were used to analyze the changes in GSLs and transcriptome of Brassica during insect feeding, thereby revealing the plant-insect interaction in Brassica plants. The results showed that the content of GSLs began to significantly increase after 48 h of herbivory by S. exigua, with sinigrin as the main component. Transcriptome analysis showed that a total of 8940 DEGs were identified in mustard challenged with beet armyworm larvae. The functional enrichment results revealed that the pathways related to the biosynthesis of glucosinolate and jasmonic acid were significantly enriched by upregulated DEGs, suggesting that mustard might provide a defense against herbivory by inducing JA biosynthesis and then promoting GSL accumulation. Surprisingly, genes regulating JA catabolism and inactivation were also activated, and both JA signaling repressors (JAZs and JAMs) and activators (MYCs and NACs) were upregulated during herbivory. Taken together, our results indicate that the accumulation of GSLs regulated by JA signaling, and the regulation of active and inactive JA compound conversion, as well as the activation of JA signaling repressors and activators, collectively control the anti-insect defense response and avoid over-stunted growth in mustard during insect feeding.


Assuntos
Beta vulgaris , Mostardeira , Animais , Mostardeira/genética , Mostardeira/metabolismo , Transcriptoma , Spodoptera/fisiologia , Glucosinolatos/metabolismo , Beta vulgaris/genética , Beta vulgaris/metabolismo , Herbivoria/genética , Insetos/metabolismo
2.
Mitochondrial DNA B Resour ; 8(10): 1049-1053, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37810612

RESUMO

Plants of the genus Plectranthus are used for the treatment of digestive problems, skin diseases, and allergies, with a wide variety of uses. Here, the complete chloroplast genome sequence of Plectranthus hadiensis (Benth. ex E.Mey) Codd. 1788 was assembled and characterized for the first time. The full length of the chloroplast genome is 152,484 bp, consisting of a small single-copy region of 17,686 bp, a large single-copy region of 83,380 bp, and a pair of inverted repeats of 51,418 bp. The overall GC content is 37.73%. The chloroplast genome contains 131 unique genes, including 87 protein-coding genes, 36 transfer RNA genes, and eight ribosomal RNA genes. Phylogenetic tree construction based on the complete chloroplast genome sequences of 25 species (23 Nepetoideae, two Ajugoideae) of the Lamiaceae family showed that P. hadiensis exhibited the closest relationship with Isodon.

3.
PLoS Biol ; 21(9): e3002256, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37708089

RESUMO

The eradication of cancer stem cells (CSCs) with drug resistance confers the probability of local tumor control after chemotherapy or targeted therapy. As the main drug resistance marker, ABCG2 is also critical for colorectal cancer (CRC) evolution, in particular cancer stem-like traits expansion. Hitherto, the knowledge about the expression regulation of ABCG2, in particular its upstream transcriptional regulatory mechanisms, remains limited in cancer, including CRC. Here, ABCG2 was found to be markedly up-regulated in CRC CSCs (cCSCs) expansion and chemo-resistant CRC tissues and closely associated with CRC recurrence. Mechanistically, TOX3 was identified as a specific transcriptional factor to drive ABCG2 expression and subsequent cCSCs expansion and chemoresistance by binding to -261 to -141 segments of the ABCG2 promoter region. Moreover, we found that TOX3 recruited WDR5 to promote tri-methylation of H3K4 at the ABCG2 promoter in cCSCs, which further confers stem-like traits and chemoresistance to CRC by co-regulating the transcription of ABCG2. In line with this observation, TOX3, WDR5, and ABCG2 showed abnormal activation in chemo-resistant tumor tissues of in situ CRC mouse model and clinical investigation further demonstrated the comprehensive assessment of TOX3, WDR5, and ABCG2 could be a more efficient strategy for survival prediction of CRC patients with recurrence or metastasis. Thus, our study found that TOX3-WDR5/ABCG2 signaling axis plays a critical role in regulating CRC stem-like traits and chemoresistance, and a combination of chemotherapy with WDR5 inhibitors may induce synthetic lethality in ABCG2-deregulated tumors.


Assuntos
Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Animais , Camundongos , Resistencia a Medicamentos Antineoplásicos/genética , Modelos Animais de Doenças , Conhecimento , Células-Tronco Neoplásicas , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética
4.
FASEB J ; 37(8): e23091, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37432656

RESUMO

Renal ischemia-reperfusion injury (IRI) is a common reason of acute kidney injury (AKI). AKI can progress to chronic kidney disease (CKD) in some survivors. Inflammation is considered the first-line response to early-stage IRI. We previously reported that core fucosylation (CF), specifically catalyzed by α-1,6 fucosyltransferase (FUT8), exacerbates renal fibrosis. However, the FUT8 characteristics, role, and mechanism in inflammation and fibrosis transition remain unclear. Considering renal tubular cells are the trigger cells that initiate the fibrosis in the AKI-to-CKD transition in IRI, we targeted CF by generating a renal tubular epithelial cell (TEC)-specific FUT8 knockout mouse and measured FUT8-driven and downstream signaling pathway expression and AKI-to-CKD transition. During the IRI extension phase, specific FUT8 deletion in the TECs ameliorated the IRI-induced renal interstitial inflammation and fibrosis mainly via the TLR3 CF-NF-κB signaling pathway. The results firstly indicated the role of FUT8 in the transition of inflammation and fibrosis. Therefore, the loss of FUT8 in TECs may be a novel potential strategy for treating AKI-CKD transition.


Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Traumatismo por Reperfusão , Animais , Camundongos , Injúria Renal Aguda/etiologia , Fucosiltransferases/genética , Inflamação , Camundongos Knockout , NF-kappa B , Traumatismo por Reperfusão/genética , Receptor 3 Toll-Like
5.
Cell Signal ; 110: 110806, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37468052

RESUMO

Hypoxic lung cancer cells are highly resistant to radiation. Peroxiredoxin-1 (PRX-1), a transcriptional coactivator that enhances the DNA-binding activity of serum reactive factor, has been identified as a target for radiotherapy sensitization, but the underlying molecular mechanism remains unclear. This study aimed to investigate the influence of PRX-1 on radiotherapy sensitivity in hypoxic tumors. Hypoxic lung cancer cells exhibited radiotherapy-resistant phenotypes after irradiation, including increased proliferation, DNA damage repair, cell migration, invasion and stemness. Radio-resistant hypoxic lung cancer cells showed high expression levels of PRX-1. Furthermore, we observed that PRX-1 bound to the promoter region of TRL4 (-300 to -600) and promoted its transcription and expression and that PRX-1/TRL4 activated the NF-κB/p65 signaling pathway. Increased radiotherapy resistance of hypoxic lung cancer cells increased their ability to proliferate, migrate, and maintain stemness in vivo and in vitro. These findings suggest that PRX-1/TRL4 could be used as a target for the treatment of radiotherapy-resistant lung cancer cells and further provide a theoretical basis for the clinical treatment of hypoxic lung cancer cells.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Receptor 4 Toll-Like , Humanos , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Hipóxia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/metabolismo , NF-kappa B , Peroxirredoxinas/genética
6.
Int Immunopharmacol ; 118: 109994, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37098656

RESUMO

Alzheimer's disease (AD) is a common chronic neurodegenerative disease. Some studies have suggested that dysregulation of microglia activation and the resulting neuroinflammation play an important role in the development of AD pathology. Activated microglia have both M1 and M2 phenotypes and inhibition of M1 phenotype while stimulating M2 phenotype has been considered as a potential treatment for neuroinflammation-related diseases. Baicalein is a class of flavonoids with anti-inflammatory, antioxidant and other biological activities, but its role in AD and the regulation of microglia are limited. The purpose of this study was to investigate the effect of baicalein on the activation of microglia in AD model mice and the related molecular mechanism. Our results showed that baicalein significantly improved the learning and memory ability and AD-related pathology of 3 × Tg-AD mice, inhibited the level of pro-inflammatory factors TNF-α, IL-1ß and IL-6, promoted the production of anti-inflammatory factors IL-4 and IL-10, and regulated the microglia phenotype through CX3CR1/NF-κB signaling pathway. In conclusion, baicalein can regulate the phenotypic transformation of activated microglia and reduce neuroinflammation through CX3CR1/NF-κB pathway, thereby improving the learning and memory ability of 3 × Tg-AD mice.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Camundongos , Animais , NF-kappa B/metabolismo , Camundongos Transgênicos , Doença de Alzheimer/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neuroinflamatórias , Microglia , Anti-Inflamatórios/farmacologia , Receptor 1 de Quimiocina CX3C/metabolismo
7.
Phytother Res ; 37(2): 410-423, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36114804

RESUMO

The present study aims to investigate the cognition-enhancing effect of 3, 14, 19-Triacetyl andrographolide (ADA) on learning and memory deficits in 3 × Tg-AD mice and to explore its underlying mechanism. Eight-month-old 3 × Tg-AD mice and C57BL/6J mice were randomly divided into three groups, namely wild-type group, 3 × Tg-AD group, and 3 × Tg-AD+ADA group (5 mg/kg, for 21 days, i.p.). We found that ADA significantly improved learning and cognition impairment, inhibited the loss of Nissl body, and reduced Aß load in the brains of 3 × Tg-AD mice. In addition, ADA enhanced the levels of PSD95 and SYP, which were closely associated with synaptic plasticity. Accumulated autophagosomes, LC3II, and P62 in hippocampus and cortex of 3 × Tg-AD mice were decreased by ADA treatment. Furthermore, ADA administration further down-regulated the expressions of p-AKT and p-mTOR, reduced the level of CTSB, and increased the co-localization of LC3 and LAMP1 in the brains of 3 × Tg-AD mice, implying that ADA-induced autophagy initiation and also promoted the degradation process. In Aß25-35 -induced HT22 cells, ADA displayed similar effects on autophagy flux as observed in 3 × Tg-AD mice. Our finding verified that ADA could improve synaptic plasticity and cognitive function, which is mainly attributed to the key roles of ADA in autophagy induction and degradation.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Camundongos , Animais , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Camundongos Transgênicos , Camundongos Endogâmicos C57BL , Cognição , Disfunção Cognitiva/tratamento farmacológico , Autofagia , Modelos Animais de Doenças , Peptídeos beta-Amiloides/metabolismo
8.
Nutrients ; 14(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35956355

RESUMO

Cornuside is an iridoid glycoside from Cornus officinalis, with the activities of anti-inflammatory, antioxidant, anti-mitochondrial dysfunction, and neuroprotection. In the present research, a triple-transgenic mice model of AD (3 × Tg-AD) was used to explore the beneficial actions and potential mechanism of cornuside on the memory deficits. We found that cornuside prominently alleviated neuronal injuries, reduced amyloid plaque pathology, inhibited Tau phosphorylation, and repaired synaptic damage. Additionally, cornuside lowered the release of interleukin-1ß (IL-1ß), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and nitric oxide (NO), lowered the level of malondialdehyde (MDA), and increased the activity of superoxide dismutase (SOD) and the level of glutathione peroxidase (GSH-Px). Cornuside also significantly reduced the activation of astrocytes and modulated A1/A2 phenotypes by the AKT/Nrf2/NF-κB signaling pathway. We further confirmed that LY294002 and Nrf2 silencing could block the cornuside-mediated phenotypic switch of C6 cells induced by microglia conditioned medium (MCM) in response to lipopolysaccharide (LPS), which indicated that the effects of cornuside in astrocyte activation are dependent on AKT/Nrf2/NF-κB signaling. In conclusion, cornuside may regulate the phenotypic conversion of astrocytes, inhibit neuroinflammation and oxidative stress, improve synaptic plasticity, and alleviate cognitive impairment in mice through the AKT/Nrf2/NF-κB axis. Our present work provides an experimental foundation for further research and development of cornuside as a candidate drug for AD management.


Assuntos
Doença de Alzheimer , Fator 2 Relacionado a NF-E2 , Doença de Alzheimer/tratamento farmacológico , Animais , Astrócitos/metabolismo , Glucosídeos , Inflamação/metabolismo , Iridoides/farmacologia , Camundongos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piranos
9.
Acta Pharmacol Sin ; 43(4): 840-849, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34267346

RESUMO

Luteolin is a flavonoid in a variety of fruits, vegetables, and herbs, which has shown anti-inflammatory, antioxidant, and anti-cancer neuroprotective activities. In this study, we investigated the potential beneficial effects of luteolin on memory deficits and neuroinflammation in a triple-transgenic mouse model of Alzheimer's disease (AD) (3 × Tg-AD). The mice were treated with luteolin (20, 40 mg · kg-1 · d-1, ip) for 3 weeks. We showed that luteolin treatment dose-dependently improved spatial learning, ameliorated memory deficits in 3 × Tg-AD mice, accompanied by inhibiting astrocyte overactivation (GFAP) and neuroinflammation (TNF-α, IL-1ß, IL-6, NO, COX-2, and iNOS protein), and decreasing the expression of endoplasmic reticulum (ER) stress markers GRP78 and IRE1α in brain tissues. In rat C6 glioma cells, treatment with luteolin (1, 10 µM) dose-dependently inhibited LPS-induced cell proliferation, excessive release of inflammatory cytokines, and increase of ER stress marker GRP78. In conclusion, luteolin is an effective agent in the treatment of learning and memory deficits in 3 × Tg-AD mice, which may be attributable to the inhibition of ER stress in astrocytes and subsequent neuroinflammation. These results provide the experimental basis for further research and development of luteolin as a therapeutic agent for AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/tratamento farmacológico , Animais , Disfunção Cognitiva/tratamento farmacológico , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Endorribonucleases/farmacologia , Endorribonucleases/uso terapêutico , Luteolina/farmacologia , Luteolina/uso terapêutico , Camundongos , Camundongos Transgênicos , Doenças Neuroinflamatórias , Proteínas Serina-Treonina Quinases , Ratos
10.
J Phys Chem A ; 125(48): 10280-10290, 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34846887

RESUMO

An asymmetric two-way proton transfer molecule 3-(benzo[d]-thiazol-2-yl)-2-hydroxy-5-methoxybenzaldehyde (BTHMB) with the function of white-light emission was synthesized in a recent experiment (Bhattacharyya, A.; Mandal, S. K.; Guchhait, N. J. Phys. Chem. A 2019, 123, 10246). The particularity of this molecule is that there are two possible forms, one of which contained a six-membered H-bonded network toward a N atom (BTHMB-NH) present in the molecule as a proton acceptor and the other was toward an O atom (BTHMB-OH). Unfortunately, the experimental work lacked the theoretical explanation about the determination of the BTHMB-NH form and its excited-state intramolecular proton transfer (ESIPT) process under different solvents. Therefore, this study has explored these two points by means of the time-dependent density functional theory (TDDFT) method. The calculated relative energy and potential energy profile (PEP) of the transformation between BTHMB-NH and BTHMB-OH forms illustrated that BTHMB-NH was more stable, and the transfer from BTHMB-NH to BTHMB-OH was almost impossible at both S0 and S1 states under all solvents due to high potential energy barriers (PEBs) (11.67-21.59 kcal/mol). These calculated results provided the theoretical explanation and verification for the conclusion that the BTHMB molecule exists in the BTHMB-NH form in the experiment. Subsequently, the constructed PEPs of the ESIPT process for BTHMB-NH have proved that it was prone to the ESIPT process due to low PEBs (0.11-0.28 kcal/mol) at the S1 state. In particular, as the solvent polarity increased, the intensity of the intramolecular hydrogen bond (IHB) (O3-H4···N5) increased and the ESIPT process was more likely to occur. In addition, the twisted intramolecular charge-transfer (TICT) process was studied to explore the possible fluorescence quenching pathway of BTHMB-NH. Based on the PEPs of BTHMB-NH-T as a function of the N5-C6-C7-C8 dihedral angle at the S0 and S1 states, it is seen that the S0 state TICT process was inhibited due to the large PEBs (16.45-23.93 kcal/mol). Although the S1 state PEBs have been greatly reduced, they were still maintained at about 3.60 kcal/mol (3.60-3.84 kcal/mol), and hence, this process was still relatively difficult to occur. Due to the fact that BTHMB can be regarded as a standard in future designs involving red light and solvent-specific white-light emitters, a certain amount of investigative work on the ESIPT process was done in detail, and it paved the way for future research on the directionality of ESIPT in double ESIPT probes.

11.
Cell Death Differ ; 28(4): 1347-1363, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33162555

RESUMO

CRSP8 plays an important role in recruiting mediators to genes through direct interaction with various DNA-bound transactivators. In this study, we uncovered the unique function of CRSP8 in suppressing thyroid cancer differentiation and promoting thyroid cancer progression via targeting IKKα signaling. CRSP8 was highly expressed in human thyroid cancer cells and tissues, especially in anaplastic thyroid cancer (ATC). Knockdown of CRSP8 suppressed cell growth, migration, invasion, stemness, and induced apoptosis and differentiation in ATC cells, while its overexpression displayed opposite effects in differentiated thyroid cancer (DTC) cells. Mechanistically, CRSP8 downregulated IKKα expression by binding to the IKKα promoter region (-257 to -143) to negatively regulate its transcription. Knockdown or overexpression of IKKα significantly reversed the expression changes of the differentiation and EMT-related markers and cell growth changes mediated by CRSP8 knockdown or overexpression in ATC or DTC cells. The in vivo study also validated that CRSP8 knockdown inhibited the growth of thyroid cancer by upregulating IKKα signaling in a mouse model of human ATC. Furthermore, we found that CRSP8 regulated the sensitivity of thyroid cancer cells to chemotherapeutics, including cisplatin and epirubicin. Collectively, our results demonstrated that CRSP8 functioned as a modulator of IKKα signaling and a suppressor of thyroid cancer differentiation, suggesting a potential therapeutic strategy for ATC by targeting CRSP8/IKKα pathway.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Quinase I-kappa B/metabolismo , Complexo Mediador/metabolismo , Carcinoma Anaplásico da Tireoide/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Epirubicina/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Quinase I-kappa B/genética , Masculino , Complexo Mediador/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transdução de Sinais/efeitos dos fármacos , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Carcinoma Anaplásico da Tireoide/patologia , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Mol Oncol ; 15(4): 1180-1202, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33305480

RESUMO

Human telomerase reverse transcriptase (hTERT) plays an extremely important role in cancer initiation and development, including colorectal cancer (CRC). However, the precise upstream regulatory mechanisms of hTERT in different cancer types remain poorly understood. Here, we uncovered the candidate transcriptional factor of hTERT in CRC and explored its role and the corresponding molecular mechanisms in regulating hTERT expression and CRC survival with an aim of developing mechanism-based combinational targeting therapy. The possible binding proteins at the hTERT promoter were uncovered using pull-down/mass spectrometry analysis. The regulation of SPT6 on hTERT expression and CRC survival was evaluated in human CRC cell lines and mouse models. Mechanistic studies focusing on the synergy between SPT6 and staphylococcal nuclease and Tudor domain containing 1 (SND1) in controlling hTERT expression and CRC progression were conducted also in the above two levels. The expression correlation and clinical significance of SPT6, SND1, and hTERT were investigated in tumor tissues from murine models and patients with CRC in situ. SPT6 was identified as a possible transcriptional factor to bind to the hTERT promoter. SPT6 knockdown decreased the activity of hTERT promoter, downregulated the protein expression level of hTERT, suppressed proliferation, invasion, and stem-like properties, promoted apoptosis induction, and enhanced chemotherapeutic drug sensitivity in vitro. SPT6 silencing also led to the delay of tumor growth and metastasis in mice carrying xenografts of human-derived colon cancer cells. Mechanistically, SND1 interacted with SPT6 to co-control hTERT expression and CRC cell proliferation, stemness, and growth in vitro and in vivo. SPT6, SND1, and hTERT were highly expressed simultaneously in CRC tissues, both from the murine model and patients with CRC in situ, and pairwise expression among these three factors showed a significant positive correlation. In brief, our research demonstrated that SPT6 synergized with SND1 to promote CRC development by targeting hTERT and put forward that inhibiting the SPT6-SND1-hTERT axis may create a therapeutic vulnerability in CRC.


Assuntos
Neoplasias do Colo/patologia , Endonucleases/genética , Telomerase/metabolismo , Fatores de Transcrição/genética , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Regiões Promotoras Genéticas
13.
Cell Death Dis ; 11(7): 506, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32632098

RESUMO

PD-L1 is overexpressed in tumor cells and contributes to cancer immunoevasion. However, the role of the tumor cell-intrinsic PD-L1 in cancers remains unknown. Here we show that PD-L1 regulates lung cancer growth and progression by targeting the WIP and ß-catenin signaling. Overexpression of PD-L1 promotes tumor cell growth, migration and invasion in lung cancer cells, whereas PD-L1 knockdown has the opposite effects. We have also identified WIP as a new downstream target of PD-L1 in lung cancer. PD-L1 positively modulates the expression of WIP. Knockdown of WIP also inhibits cell viability and colony formation, whereas PD-L1 overexpression can reverse this inhibition effects. In addition, PD-L1 can upregulate ß-catenin by inhibiting its degradation through PI3K/Akt signaling pathway. Moreover, we show that in lung cancer cells ß-catenin can bind to the WIP promoter and activate its transcription, which can be promoted by PD-L1 overexpression. The in vivo experiments in a human lung cancer mouse model have also confirmed the PD-L1-mediated promotion of tumor growth and progression through activating the WIP and ß-catenin pathways. Furthermore, we demonstrate that PD-L1 expression is positively correlated with WIP in tumor tissues of human adenocarcinoma patients and the high expression of PD-L1 and WIP predicts poor prognosis. Collectively, our results provide new insights into understanding the pro-tumorigenic role of PD-L1 and its regulatory mechanism on WIP in lung cancer, and suggest that the PD-L1/Akt/ß-catenin/WIP signaling axis may be a potential therapeutic target for lung cancers.


Assuntos
Antígeno B7-H1/metabolismo , Proteínas do Citoesqueleto/metabolismo , Progressão da Doença , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Transdução de Sinais , beta Catenina/metabolismo , Animais , Antígeno B7-H1/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Proteínas do Citoesqueleto/genética , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Pulmonares/genética , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Modelos Biológicos , Invasividade Neoplásica , Fosfatidilinositol 3-Quinases/metabolismo , Prognóstico , Regiões Promotoras Genéticas/genética , Ligação Proteica , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica , Regulação para Cima/genética
14.
Cell Death Dis ; 11(6): 476, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561752

RESUMO

Y-box binding protein 1 (YBX1) is involved in the development of multiple types of tumors. However, the relationship between YBX1 and autophagy in non-small cell lung cancer (NSCLC) remains unclear. In this study, we analyzed the expression and clinical significance of YBX1 and markers of autophagy (LC3I/II) in NSCLC and examined their roles in regulating sensitivity to cisplatin in NSCLC. The retrospective analysis of patients with NSCLC indicated that YBX1 was positively correlated with autophagy. Increased levels of YBX1 or autophagy also observed in NSCLC cells compared with those in 16HBE cells. Compared to the controls, the knockdown of YBX1 expression suppressed autophagy, increased drug sensitivity and promoted apoptosis in response to cisplatin in NSCLC cells by targeting the p110ß promoter and inhibiting p110ß/Vps34/beclin1 signaling pathways. We also demonstrated in an in vivo study that the overexpressed YBX1 effectively increased NSCLC growth and progression and decreased the sensitivity to cisplatin by inducing autophagy in a xenograft tumor model, and these effects were concomitant with the increasing of p110ß and beclin1 expression. Collectively, these results show that YBX1 plays an essential role in autophagy in NSCLC.


Assuntos
Autofagia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Cisplatino/urina , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Proteína 1 de Ligação a Y-Box/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proteína Beclina-1/metabolismo , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/ultraestrutura , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Modelos Animais de Doenças , Feminino , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/ultraestrutura , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Associadas aos Microtúbulos/metabolismo , Pessoa de Meia-Idade
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 232: 118082, 2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32086041

RESUMO

The new 3-hydroxy-4-pyridylisoquinoline compound is attractive and promising lead structure in drug discovery. The pronounced sensitivity of its emission property toward solvent polarity effect was presented in experiment (J. Org. Chem, 2019, 84, 3011). Nevertheless, the experiment was lack of solvent polarity effect on the excited state intramolecular proton transfer (ESIPT) mechanism in detail. In this study, the ESIPT process of this molecule in different polarity solvents were comprehensively expounded by density functional theory (DFT) and time-dependent DFT (TDDFT) methods. In order to ensure the accuracy of the experiment and roundly explore in theoretical level, two ESIPT pathways (1 and 2) based on the N1 and N2 forms of studied molecule were proposed, among which the ESIPT pathway 1 was derived from experiment. The calculated electronic spectrum of both N1 and N2 forms were rather comparable with the experiment. The calculated intramolecular hydrogen bond (IHB) parameters and infrared (IR) vibration spectra determined the enhancement of IHBs at the S1 state under different solvents for both N1 and N2 forms. The frontier molecular orbitals (FMOs) analysis proved that the intramolecular charge transfer (ICT) taken place during photoexcitation. The potential energy curves (PECs) at the S0 and S1 states were constructed to illustrate the solvent polarity effect on ESIPT mechanism. According to potential energy barriers (PEBs) on the PECs at S1 state, it is concluded that the ESIPT pathway 1 was forbidden with exceedingly high PEBs (24.585-25.322 kcal/mol), while the ESIPT pathway 2 was feasible with enough low PEBs (0.100-0.510 kcal/mol), which suggested the inconsequence of the experiment. Based on the PEBs of ESIPT pathway 2 in different solvent, the effect of solvent polarity on ESIPT mechanism was depicted. The results are as follows: the S1 state IHB intensity was enhanced with increasing solvent polarity; the extent of ICT was decreased with the increment of solvent polarity; the S1 state PEB was decreased as the solvent polarity increased. Indeed in short, the ESIPT reaction became more and more likely as the solvent polarity enhanced. We believe that this investigation will be useful to the utilization and development of property for such photochemical substances.

16.
Aging (Albany NY) ; 12(1): 611-627, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31905343

RESUMO

Cisplatin is one of the most potent chemotherapeutic agents for the treatment of colon cancer. Nevertheless, the unavoidability of the notable toxicity and the development of the acquired resistance severely restricted its clinical application. Aspirin and some other non-steroidal anti-inflammatory drugs have been used to prevent colon tumorigenesis as chemopreventive agents. Here, we explored the possibility of aspirin as an adjuvant drug to boost the anti-cancer effect of cisplatin for colon cancer. We found that aspirin significantly enhanced the cisplatin-mediated inhibitions of cell proliferation, migration and invasion and the induction of apoptosis in colon cancer cells. The combined treatment of aspirin and cisplatin suppressed the expression of the anti-apoptotic protein Bcl-2 and the EMT-related proteins, up-regulated the levels of the cleaved PARP and Bax, and blocked the PI3K/AKT and RAF-MEK-ERK signaling pathway. In addition, we demonstrated that the enhanced effect of aspirin on the cisplatin-induced inhibition of tumor cell growth was also mediated through the suppression of the binding activity of NF-κB to the COX-2 promoter. The combination of aspirin and cisplatin effectively attenuated the translocation of NF-κB p65/p50 from the cytoplasm to the nucleus, and abrogated the binding of NF-κB p65/p50 to the COX-2 promoter, thereby down-regulating COX-2 expression and PGE2 synthesis. Moreover, the in vivo study also verified the enhanced anti-tumor activity of such combined therapy in colon cancer by targeting the NF-κB/COX-2 signaling. Our results provided new insights into understanding the molecular mechanisms of aspirin in sensitizing cisplatin-mediated chemotherapeutic effect in colon cancer and indicated a great potential of this combined therapy for cancer treatment.


Assuntos
Aspirina/farmacologia , Cisplatino/farmacologia , Ciclo-Oxigenase 2/metabolismo , NF-kappa B/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células , Sinergismo Farmacológico , Xenoenxertos , Humanos , Camundongos , Ligação Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
17.
Biochim Biophys Acta Mol Cell Res ; 1866(10): 1533-1543, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31301362

RESUMO

CPSF4 was identified as a crucial tumorigenic factor in lung cancer development. However, its precise function and the underlying molecular mechanisms in colon cancer progression remain completely unknown. Here, we demonstrate CPSF4 was highly expressed in human colon cancer cells and tissues. Its knockdown inhibited colorectal cancer progression in vitro, including cell proliferation, migration, invasion and stemness maintenance. In contrast, the ectopic overexpression of CPSF4 had the opposite effects in vitro and in vivo. Further mechanistic studies demonstrated that CPSF4 facilitated colorectal tumorigenesis and development partially through transcriptionally regulating hTERT expression by cooperating with NF-kB1 and co-anchoring at hTERT promoter -321 to -234 fragment. In addition, clinical samples analysis indicated that CPSF4 expression was positively correlated with hTERT, and the simultaneously high expression of CPSF4 and hTERT predicted poor patient outcome. Overall, our findings established CPSF4 as a pro-tumorigenic factor in colorectal cancer progression, and suggested that targeting CPSF4-hTERT axis may represent a promising therapeutic strategy in colon cancer treatment.


Assuntos
Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Neoplasias do Colo/metabolismo , Progressão da Doença , Predisposição Genética para Doença/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Animais , Ciclo Celular , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Fator de Especificidade de Clivagem e Poliadenilação/genética , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fragmentos de Peptídeos/metabolismo , Regiões Promotoras Genéticas , Telomerase/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/genética
18.
Nucleic Acids Res ; 47(15): 8239-8254, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31216022

RESUMO

XAB2 is a multi-functional protein participating processes including transcription, splicing, DNA repair and mRNA export. Here, we report POLR2A, the largest catalytic subunit of RNA polymerase II, as a major target gene down-regulated after XAB2 depletion. XAB2 depletion led to severe splicing defects of POLR2A with significant intron retention. Such defects resulted in substantial loss of POLR2A at RNA and protein levels, which further impaired global transcription. Treatment of splicing inhibitor madrasin induced similar reduction of POLR2A. Screen using TMT-based quantitative proteomics identified several proteins involved in mRNA surveillance including Dom34 with elevated expression. Inhibition of translation or depletion of Dom34 rescued the expression of POLR2A by stabilizing its mRNA. Immuno-precipitation further confirmed that XAB2 associated with spliceosome components important to POLR2A expression. Domain mapping revealed that TPR motifs 2-4 and 11 of XAB2 were critical for POLR2A expression by interacting with SNW1. Finally, we showed POLR2A mediated cell senescence caused by XAB2 deficiency. Depletion of XAB2 or POLR2A induced cell senescence by up-regulation of p53 and p21, re-expression of POLR2A after XAB2 depletion alleviated cellular senescence. These data together support that XAB2 serves as a guardian of POLR2A expression to ensure global gene expression and antagonize cell senescence.


Assuntos
Senescência Celular/genética , RNA Polimerases Dirigidas por DNA/genética , Íntrons/genética , Fatores de Transcrição/genética , Transcrição Gênica , Linhagem Celular , Linhagem Celular Tumoral , RNA Polimerases Dirigidas por DNA/metabolismo , Células HEK293 , Células HeLa , Humanos , Interferência de RNA , Splicing de RNA , Fatores de Processamento de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
19.
J Phys Chem A ; 123(18): 3937-3948, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-30924659

RESUMO

The dynamic excited-state intramolecular proton transfer (ESIPT) mechanisms of two novel 3-hydroxyflavone-based chromophores (1 and 2) in different surroundings (nonpolar cyclohexane and polar acetonitrile solvents), which are reported in the recent work (Chou et al. J. Phys. Chem. A. 2010, 114, 10412), are explored in terms of the density functional theory (DFT) and time-dependent DFT theoretical methods. The computational absorption and emission spectra for the work rendered here were in reasonable agreement with the relevant experiment. In order to present the molecular-level exposition of the ESIPT reactions for these compounds in two different solvents, we calculated the hydrogen bond (HB) parameters, corresponding infrared vibrational frequencies, frontier molecular orbitals, and maps of electron density difference between the S0 and S1 states, and the HB strengthening tendency in S1 states was verified, giving the probability of ESIPT reactions. In addition, to definitely expose the ESIPT mechanisms of compounds 1 and 2, we built the potential energy curves and potential energy surfaces in the S0 and S1 states. Calculated results exhibited that the ESIPT reaction of compound 1 in nonpolar cyclohexane solvent was more susceptible than that in polar acetonitrile solvent. For the asymmetric compound 2, only single-ESIPT processes could occur in both the solvents, and double-ESIPT processes were prohibitive due to high potential energy barriers. Moreover, the single-ESIPT processes [I (6.26 kcal/mol) and II (6.62 kcal/mol)] in cyclohexane were more susceptible than that [I' (6.91 kcal/mol) and II' (6.90 kcal/mol)] in acetonitrile. Furthermore, the single-ESIPT process I had a little advantage over the process II in cyclohexane, while the probabilities of processes I' and II' were roughly the same in acetonitrile.

20.
J Exp Clin Cancer Res ; 38(1): 48, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30717768

RESUMO

BACKGROUND: As the selective inhibitor of BRAF kinase, vemurafenib exhibits effective antitumor activities in patients with V600 BRAF mutant melanomas. However, acquired drug resistance invariably develops after its initial treatment. METHODS: Immunohistochemical staining was performed to detect the expression of iNOS and hTERT, p-p65, Epcam, CD44, PCNA in mice with melanoma xenografts. The proliferation and migration of melanoma cells were detected by MTT, tumorsphere culture, cell cycle, cell apoptosis, AO/EB assay and colony formation, transwell assay and scratch assay in vitro, and tumor growth differences were observed in xenograft nude mice. Changes in the expression of key molecules in the iNOS/hTERT signaling pathways were detected by western blot. Nucleus-cytoplasm separation, and immunofluorescence analyses were conducted to explore the location of p50/p65 in melanoma cell lines. Flow cytometry assay were performed to determine the expression of CD44. Pull down assay and ChIP assay were performed to detect the binding ability of p65 at iNOS and hTERT promoters. Additionally, hTERT promoter-driven luciferase plasmids were transfected in to melanoma cells with indicated treatment to determine luciferase activity of hTERT. RESULTS: Melatonin significantly and synergistically enhanced vemurafenib-mediated inhibitions of proliferation, colony formation, migration and invasion and promoted vemurafenib-induced apoptosis, cell cycle arresting and stemness weakening in melanoma cells. Further mechanism study revealed that melatonin enhanced the antitumor effect of vemurafenib by abrogating nucleus translocation of NF-κB p50/p65 and their binding at iNOS and hTERT promoters, thereby suppressing the expression of iNOS and hTERT. The elevated anti-tumor capacity of vemurafenib upon co-treatment with melatonin was also evaluated and confirmed in mice with melanoma xenografts. CONCLUSIONS: Collectively, our results demonstrate melatonin synergizes the antitumor effect of vemurafenib in human melanoma by inhibiting cell proliferation and cancer-stem cell traits via targeting NF-κB/iNOS/hTERT signaling pathway, and suggest the potential of melatonin in antagonizing the toxicity of vemurafenib and augmenting its sensitivities in melanoma treatment.


Assuntos
Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Antioxidantes/uso terapêutico , Melanoma/tratamento farmacológico , Melatonina/uso terapêutico , Células-Tronco Neoplásicas/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Neoplasias Cutâneas/tratamento farmacológico , Telomerase/antagonistas & inibidores , Vemurafenib/uso terapêutico , Animais , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sinergismo Farmacológico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Masculino , Melatonina/farmacologia , Camundongos , Camundongos Nus , NF-kappa B/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Vemurafenib/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...