Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(7): 6955-6965, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36967524

RESUMO

Controlling atomic adjustment of single-atom catalysts (SACs) can directly change its local configuration, regulate the energy barrier of intermediates, and further optimize reaction pathways. Herein, we report an atom manipulating process to synthesize Ni atoms stabilized on vanadium carbide (NiSA-VC) through a nanofiber-medium thermodynamically driven atomic migration strategy. Experimental and theoretical results systematically reveal the tunable migration pathway of Ni atom from Ni nanoparticles to neighboring N-doped carbon (NC) and finally to metal carbide that was obtained by regulating the competitive adsorption energies between VC and NC for capturing Ni atoms. For CO2-to-CO electroreduction, NiSA-VC exhibits an industrial current density of -180 mA cm-2 at -1.0 V vs reversible hydrogen electrode and the highest Faradaic efficiency for CO production (FECO) of 96.8% at -0.4 V vs RHE in a flow cell. Significant electron transfers occurring in NiSA-VC structures contribute to the activation of CO2, facilitate the reaction free energy, regulate *CO desorption as the rate-determining step, and promote the activity and selectivity. This study provides an understanding on how to design powerful SACs for electrocatalysis.

2.
ACS Nano ; 16(2): 3251-3263, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35089016

RESUMO

Strain engineering in bimetallic alloy structures is of great interest in electrochemical CO2 reduction reactions (CO2RR), in which it simultaneously improves electrocatalytic activity and product selectivity by optimizing the binding properties of intermediates. However, a reliable synthetic strategy and systematic understanding of the strain effects in the CO2RR are still lacking. Herein, we report a strain relaxation strategy used to determine lattice strains in bimetal MNi alloys (M = Pd, Ag, and Au) and realize an outstanding CO2-to-CO Faradaic efficiency of 96.6% and show the outstanding activity and durability toward a Zn-CO2 battery. Molecular dynamics (MD) simulations predict that the relaxation of strained PdNi alloys (s-PdNi) is correlated with increases in synthesis temperature, and the high temperature activation energy drives complete atomic mixing of multiple metal atoms to allow for regulation of lattice strains. Density functional theory (DFT) calculations reveal that strain relaxation effectively improves CO2RR activity and selectivity by optimizing the formation energies of *COOH and *CO intermediates on s-PdNi alloy surfaces, as also verified by in situ spectroscopic investigations. This approach provides a promising approach for catalyst design, enabling independent optimization of formation energies of reaction intermediates to improve catalytic activity and selectivity simultaneously.

3.
Int J Biol Macromol ; 195: 294-301, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34914907

RESUMO

Reactive oxygen species (ROS) for treating bacterial infection is an alternative strategy to overcome the drawbacks such as bacterial resistance of commonly used antibiotics. Nanocatalysts have been proved highly effective in regulating intracellular ROS level due to their intrinsic enzymes-mimicking ability. Herein, we prepared a carbon-based nanozyme doped with copper atoms with peroxidase mimetic activity to catalyze the decomposition of bio-safety dosage of H2O2 to highly reactive OH radicals for antibacterial treatment. Furthermore, we designed the thermo-responsive nanogels consisting of bacterial cellulose nanowhiskers as the carrier of the nanozyme. The obtained nanogels displayed remarkable intelligent response to temperature change with sol-gel transition temperature of ~33 °C and in situ gel forming ability. Moreover, the nanogels exhibited excellent biocompatibility in vitro, along with remarkable antibacterial efficacy which could inactivate 6.36 log of S. aureus and 6.01 log of E. coli in 3 h, respectively. The findings provide a novel strategy for advancing the development of nanocatalysts-based responsive biomaterials for treating bacterial infections.


Assuntos
Antibacterianos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Nanogéis/química , Antibacterianos/farmacologia , Materiais Biocompatíveis , Catálise , Celulose , Escherichia coli , Peróxido de Hidrogênio , Testes de Sensibilidade Microbiana , Nanopartículas , Espécies Reativas de Oxigênio/química , Staphylococcus aureus
4.
J Colloid Interface Sci ; 595: 88-97, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33813228

RESUMO

Binary transition metal chalcogenide core-shell nanocrystals are considered the most promising nonprecious metal catalysts for large-scale industrial hydrogen production. Herein, we report a one-dimensional, space-confined, solid-phase strategy for the growth of a Cu9S5@MoS2 core-shell heterostructure by combining electrospinning and chemical vapor deposition methods. The Cu9S5@MoS2 core-shell nanocrystals were synthesized in situ on carbon nanofibers (Cu9S5@MoS2/CNFs) by an S vapor graphitization process. Tuning of the MoS2 shell numbers can be controlled by changing the mass ratio of the Cu and Mo precursors. We experimentally determined the effects of the thickness of the MoS2 shell on the electrocatalytic activity for the hydrogen evolution reaction (HER) in acidic and alkaline solutions. When the mass ratio is 3:1, the Cu9S5@MoS2/CNFs show the fewest MoS2 shells with just 1-2 layers each and exhibit the best HER performance with small overpotentials of 116 mV and 114 mV in acidic and alkaline solutions, respectively, at a current density of 10 mA cm-2. The core shell structures, with their unique Cu-S-Mo nanointerfaces, could enhance the electron transfer and surface area, thus increasing the performance of the HER. This work provides a facile method to design unique core shell assemblies in one-dimensional nanostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...