Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(3): e2306360, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38098258

RESUMO

Biomass-based hydrogel is a promising flame-retardant material and has a high potential for applications in transportation, aerospace, building and electrical engineering, and electronics. However, rapid vat photopolymerization (VP) 3D printing of biomass-based hydrogels, especially that of all-natural ones, is still rare. Herein, a new class of VP 3D-printed hydrogels with strong covalent networks, fabricating using fully biomass materials and a commercial liquid crystal display (LCD) printer assembled with low-intensity visible light is presented. Encouragingly, the highly ordered layer-by-layer packing structures provided by VP 3D printing technology endow these hydrogels with remarkable flame retardancy, exceptional temperature resistance, advantageous combustion behaviors, and favorable mechanical strength, in particular, giving them a better limit oxygen index (83.5%) than various biomass-based hydrogels. The proposed approach enables the green design as well as the precise and efficient preparation for flame-retardant materials, paving the way for the future flame-retardant materials toward attaining green sustainability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...