Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 661: 709-719, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38320407

RESUMO

The exploration of bifunctional catalyst with economic, durable, and efficient performance plays a crucial role to boost both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in overall water splitting. Herein, we report a feasible strategy to design effective heterostructure between CoP and Ti3C2Tx MXene (denoted as CoP/Ti3C2Tx). This approach allows for the growth of CoP nanoparticles with uniform size of 5 nm on the Ti3C2Tx MXene, further enhancing the water electrolysis efficiency. The CoP/Ti3C2Tx bifunctional catalyst demonstrates an exceptional HER activity with a satisfactory overpotential of 103 mV at 10 mA cm-2, and also can drive 10 mA cm-2 for OER with the overpotential of 312 mV in 1.0 M KOH. Moreover, the CoP/Ti3C2Tx-based electrolyzer exhibits high electrochemical stability for 24 h with a low required voltage of 1.66 V at 10 mA cm-2. The density functional theory (DFT) calculations reveal that the introduction of Ti3C2Tx MXene significantly adjusts d-band center towards Fermi level and expand total density of states, resulting in great electrical conductivity, enhanced water adsorption, and activation. This study provides an available mode for effective design and construction of non-noble-metal-based dual-functional catalyst toward practical energy conversion.

2.
ACS Appl Mater Interfaces ; 15(51): 59524-59533, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38108147

RESUMO

Amorphous materials disrupt the intrinsic linear scalar dependence seen in their crystalline counterparts, typically exhibiting enhanced catalytic characteristics. Nevertheless, substantial obstacles remain in terms of boosting their stability, enhancing their conductivity, and elucidating distinct catalytic mechanisms. Herein, a core-shell catalyst, comprising a crystalline SnO2 core and an amorphous SnOx shell supported on MXene (denoted as SnO2@SnOx/MXene), was prepared utilizing hydrothermal and solution reduction methods. The SnO2@SnOx/MXene catalyst excels in the electrocatalytic conversion of CO2 to formate, yielding a Faradaic efficiency (FE) as high as 93% for formate production at -1.17 V vs RHE and demonstrating exceptional durability. Both density functional theory (DFT) calculations and experimental results indicate that the SnOx shell bolsters formate formation by fine-tuning the adsorption energy of the *OCHO intermediate. In SnO2@SnOx/MXene, MXene plays a vital role in enhancing the conductivity and stability of the amorphous shell and especially amplifying Raman signals of catalyst components. The ex/in situ surface-enhanced Raman scattering (SERS) application further confirms the formation of amorphous SnOx and further enables the direct detection of the formation of the intermediate species. This work provides the basis for the application of amorphous materials in practical electrocatalytic reduction of CO2 reduction.

3.
Mikrochim Acta ; 190(10): 384, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37698718

RESUMO

A sandwich "signal-off" type photoelectrochemical (PEC) immunosensor was fabricated based on a composite heterojunction of tungsten oxide/titanium oxide microspheres (WO3/TiO2) acting as signal amplification platform and carbon microspheres loaded by gold nanoparticles (Cs@Au NPs) utilized as the label for detecting antibody. WO3/TiO2 had excellent photoelectric performance, and the results of Mott-Schottky plots, open-circuit voltage, and electron spin resonance spectroscopy indicated that it belonged to the Z-scheme heterojunction transfer mechanism of photogenerated carriers. To achieve the sensitization of PEC immunosensor, Cs@Au NP-labeled immunocomplex can effectively reduce the photocurrent signal. The PEC immunosensors were fabricated under the optimal conditions of 1:1 WO3/TiO2 (molar ratio), 2.0 mg mL-1 WO3/TiO2, and 1.5 mg mL-1 Cs@Au NPs. Through comparison of the detection results of label-free and sandwich-type PEC immunosensors for nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we found that the sensitivity of the sandwich type was 2.53 times the label-free type, and the limit of detection was 0.006 ng mL-1, i.e., 3.17 times lower than the label-free type. This demonstrates that the developed sandwich-type PEC immunosensor will have a brighter application prospect.


Assuntos
Técnicas Biossensoriais , COVID-19 , Nanopartículas Metálicas , Humanos , Ouro , Imunoensaio , SARS-CoV-2
4.
Environ Sci Pollut Res Int ; 30(46): 101963-101988, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37667125

RESUMO

Artificial light at night (ALAN) is rapidly growing and expanding globally, posing threats to ecological safety. Urban light pollution prevention and control are moving toward urban artificial light ecology construction. To clarify the need for light ecology construction, this work analyzes 1690 articles on ALAN and light pollution and 604 on ecological light pollution from 1998 to 2022. The development process and thematic evolution of light pollution research are combed through, the historical inevitability of artificial light ecology construction is excavated, and the ecological risks of light pollution to typical animals are summarized. The results show that international research has advanced to the ecological risk factors of light pollution and the related stress mechanisms, the quantification, prediction, and pre-warning by multiple technical means, and the translation of light pollution research outcomes to prevention and control practices. While Chinese scholars have begun to pay attention to the ecological risks of light pollution, the evaluation indicators and prevention and control measures remain primarily based on human-centered needs. Therefore, a more integrated demand-side framework of light ecology construction that comprehensively considers multiple risk receptors is further constructed. Given the development trend in China, we clarified the consistency of the ecological effect of landscape lighting with landsense ecology and the consistency of light ecological risk prevention and control with the concept of One Health. Ultimately, landsense light ecology is proposed based on the "One Health" concept. This work is expected to provide a reference and inspiration for future construction of urban artificial light ecology.

5.
Small ; 19(22): e2300387, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36866519

RESUMO

The direct electrooxidation reaction of ammonia borane (ABOR) as the anodic reaction of direct ammonia borane fuel cells (DABFCs) is greatly dependent on the properties of electrocatalysts. Both the active sites and charge/mass transfer characteristics are the key to promoting the processes of kinetics and thermodynamics, which can further improve the electrocatalytic activity. Hence, the catalyst double-heterostructured Ni2 P/Ni2 P2 O7 /Ni12 P5 (d-NPO/NP) with the optimistic redistribution of electrons and active sites is prepared for the first time. The d-NPO/NP-750 catalyst obtained after pyrolysis at 750 °C shows the outstanding electrocatalytic activity toward ABOR with an onset potential of -0.329 V vs RHE which is better than all the published catalysts. The density functional theory (DFT) computations illustrate that the Ni2 P2 O7 /Ni2 P acts as the activity enhancement heterostructure with a high d-band center (-1.60 eV) and the low activation energy barrier, while the Ni2 P2 O7 /Ni12 P5 acts as the conductivity enhancement heterostructure with the highest density of valence electrons.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 294: 122570, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-36889137

RESUMO

L-cysteine (L-Cys) capped ZnS fluorescent probe (L-ZnS) were synthesized by binding ZnS nanoparticles in situ with L-Cys, the fluorescence intensity of L-ZnS increased more than 3.5 times than that of ZnS due to the cleavage of S-H bonds and the formation of Zn-S bonds between the thiol group of L-Cys and ZnS. The addition of copper ions (Cu2+) can effectively quench the fluorescence of L-ZnS to realize the rapid detection of trace Cu2+. The L-ZnS showed high sensitivity and selectivity to Cu2+. The LOD (limit of detection) of Cu2+ was as low as 7.28 nM and linearity in the concentration range of 3.5-25.5 µM. Meanwhile, for the first time, electron localization function (ELF), bond order density (BOD), and natural adaptive orbital (NAdO) analysis in the Multiwfn wavefunction program based on density functional theory were carried out to probe the binding sites and binding mode of L-Cys with Cu2+, it indicated that the deprotonated carboxyl oxygen atoms of L-Cys had the lowest electrostatic potential (ESP) and provided lone pair electrons to coordinate with Cu2+ to form non-luminescent ground state complexes, which led to fluorescence quenching of L-ZnS. From the microscopic point of view of atoms, the mechanism of fluorescence enhancement of L-Cys capped ZnS and the mechanism of fluorescence quenching after adding Cu2+ were revealed in depth, the theoretical analysis results were accordance with the experiments.

7.
J Colloid Interface Sci ; 629(Pt A): 22-32, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36049326

RESUMO

Exploration of catalysts for water splitting is critical for advancing the development of energy conversion field, but designing bifunctional catalysts remains a major challenge. Herein, we demonstrate the N-doped carbon nanotube (NCNT)-grafted N-doped carbon (NC) framework embedding CoP nanoparticles (CoP@NC/NCNT) as hydrogen and oxygen evolution reaction (HER and OER) catalysts for water splitting. As a result, the CoP@NC/NCNT electrode requires the overpotentials of 106 and 177 mV at 10 mA cm-2 in 0.5 M H2SO4 and 1.0 M KOH solutions for HER, respectively. Moreover, an overpotential of 324 mV for OER can drive 10 mA cm-2 in 1.0 KOH. The CoP@NC/NCNT-based electrolyzer derives a current density of 10 mA cm-2 at a low voltage of 1.72 V in 1.0 M KOH and remains stable for 10 h. The outstanding electrocatalytic performance is mainly attributed to the hierarchical structure with rich branches and highly active component of CoP. The intimate contacts between hierarchical porous NC frameworks by cross-linked NCNTs create a 3D conductive network, which facilitates electron or mass transfer and activates CoP. This work offers a novel route for preparing hierarchical carbon framework encapsulated metal phosphide particles for potential applications in energy conversion field.

8.
Anal Methods ; 14(48): 5091-5099, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36468531

RESUMO

The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seriously threatened global public health. Establishing a rapid and sensitive diagnostic test for early detection of the SARS-CoV-2 nucleocapsid protein is urgently required to defend against the pandemic. Herein, an enhanced lateral flow immunoassay (LFIA) was fabricated by trimetallic Au@Pd@Pt core-shell nanozymes for detection of the SARS-CoV-2 nucleocapsid protein. The Au@Pd@Pt nanozymes (Au@Pd@Pt NZs) synthesized via a one-pot method, with a dendrite morphology and uniform particle size, showed excellent peroxidase-like activity. Due to the perfect enzyme-like catalytic activity toward 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2), the catalytic signal could be generated even by a tiny amount of Au@Pd@Pt NZs accumulated on the test strip. Therefore, rapid detection with higher sensitivity was achieved. The Au@Pd@Pt NZs-based LFIA provided a quantitative range of 0.05-100 ng mL-1 with a limit of detection of 0.037 ng mL-1, which was 17-fold lower than the LFIA without enhancement. The average recoveries from spiked samples were in the range of 92.5-107.9% with relative standard deviations all less than 4%, indicating the reliability and repeatability of the proposed LFIA. Additionally, the proposed LFIA could report results within 30 min using a microplate reader. In conclusion, the Au@Pd@Pt NZs-LFIA is a rapid, simple, and sensitive method for detecting the SARS-CoV-2 nucleocapsid protein.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Peróxido de Hidrogênio , Reprodutibilidade dos Testes , COVID-19/diagnóstico , Imunoensaio/métodos
9.
Toxins (Basel) ; 14(10)2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36287978

RESUMO

A sensitive dual-readout immunosensor for fluorescence and electrochemiluminescence (ECL) detection of ricin was established, which was combined with a streptavidin-biotin signal amplification system. CdSe/ZnS quantum dots with fine fluorescence and ECL properties were used as the dual-signal function probes of the sandwich immunocomplex. Under the optimum experimental conditions, the dual signal intensity increased significantly with the rise in ricin concentration. The fluorescence intensity of the senor exhibited a good liner relationship toward the ricin concentrations with 0.1~100 ng/mL and the limit of detection (LOD) was 81.7 pg/mL; taking ECL as the detection signal, the sensor showed a linear relationship with the ricin concentrations ranging from 0.01 ng/mL to 100 ng/mL and the LOD was 5.5 pg/mL. The constructed sensor with high sensitivity had been successfully applied to the detection of ricin in complex matrices with satisfactory recoveries. The proposed immunosensor model can be extended to the analysis and detection of others target proteins.


Assuntos
Técnicas Biossensoriais , Compostos de Cádmio , Pontos Quânticos , Ricina , Compostos de Selênio , Medições Luminescentes , Imunoensaio , Estreptavidina , Biotina , Eletrodos , Limite de Detecção , Técnicas Eletroquímicas
10.
Anal Chim Acta ; 1233: 340486, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36283777

RESUMO

The SARS-CoV-2 pandemic has posed a huge challenge to rapid and accurate diagnosis of SARS-CoV-2 in the early stage of infection. In this work, we developed a novel magnetic/fluorescent dual-modal lateral flow immunoassay (LFIA) based on multifunctional nanobeads for rapid and accurate determination of SARS-CoV-2 nucleocapsid protein (NP). The multifunctional nanobeads were fabricated by using polyethyleneimine (PEI) as a mediate shell to combine superparamagnetic Fe3O4 core with dual quantum dot shells (MagDQD). The core-shell structure of MagDQD label with high loading density of quantum dots (QDs) and superior magnetic content realized LFIA with dual quantitative analysis modal from the assemblies of individual single nanoparticles. The LFIA integrated the advantages of magnetic signal and fluorescent signal, resulting excellent accuracy for quantitative analysis and high elasticity of the overall detection. In addition, magnetic signal and fluorescent signal both had high sensitivity with the limit of detection (LOD) as 0.235 ng mL-1 and 0.012 ng mL-1, respectively. The recovery rates of the methods in simulated saliva samples were 91.36%-103.60% (magnetic signal) and 94.39%-104.38% (fluorescent signal). The results indicate the method has a considerable potential to be an effective tool for diagnose SARS-CoV-2 in the early stage of infection.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Polietilenoimina , COVID-19/diagnóstico , Imunoensaio/métodos , Fenômenos Magnéticos
11.
ChemSusChem ; 15(21): e202201418, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36042539

RESUMO

Hybrid electric storage systems that combine capacitive and faradaic materials need to be well designed to benefit from the advantages of batteries and supercapacitors. The ultimate capacitive material is graphite (GR), yet high capacitance is usually not achieved due to restacking of its sheets. Therefore, an appealing approach to achieve high power and energy systems is to embed a faradaic 2D material in between the graphite sheets. Here, a simple one-step approach was developed, whereby a faradaic material [layered double hydroxide (LDH)] was electrochemically formed inside electrochemically exfoliated graphite. Specifically, GR was exfoliated under negative potentials by CoII and, in the presence of MnII , formed GR-CoMn-LDH, which exhibited a high areal capacitance and energy density. The high areal capacitance was attributed to the exfoliation of the graphite at very negative potentials to form a 3D foam-like structure driven by hydrogen evolution as well as the deposition of CoMn-LDH due to hydroxide ion generation inside the GR sheets. The ratio between the CoII and MnII in the CoMn-LDH was optimized and analyzed, and the electrochemical performance was studied. Analysis of a cross-section of the GR-CoMn-LDH confirmed the deposition of LDH inside the GR layers. The areal capacitance of the electrode was 186 mF cm-2 at a scan rate of 2 mV s-1 . Finally, an asymmetric supercapacitor was assembled with GR-CoMn-LDH and exfoliated graphite as the positive and negative electrodes, respectively, yielding an energy density of 96.1 µWh cm-3 and a power density of 5 mW cm-3 .

12.
Biosens Bioelectron ; 214: 114500, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35797936

RESUMO

Aflatoxin B1 (AFB1) is a highly toxic fungal contaminant widely found in agricultural products. It causes serious harm to human health and the environment. Thus, a fast and sensitive detection approach is urgently needed to prevent AFB1-contaminated products from entering the market effectively. A photoelectrochemical (PEC) immunosensor was developed based on tungsten trioxide/cadmium sulfide core/shell coated with a composite layer consisting of polydopamine and loaded gold nanoparticles (WO3/CdS@PDA/Au) for AFB1 detection. CdS formed a heterojunction with WO3, which improved the photoelectric performance. The coated PDA reducing CdS toxicity was demonstrated by biological experiment of Bacillus subtilis. PDA and Au NPs promoted electron transfer between the semiconductors, being beneficial promoting the photoelectron transfer. Additionally, the antibodies were immobilized on WO3/CdS@PDA/Au via the reactive quinones on the surface of the PDA and electrostatic adsorption from Au NPs. The WO3/CdS@PDA/Au composite as a Z-scheme heterojunction possessed high performance of photocurrent response, and the photoproduced electron/hole transfer path was speculated by electrons spin-resonance spectroscopy technique. Under the optimum experimental conditions, the PEC immunosensor showed a wide linear detection range from 0.05 to 100 ng mL-1 for AFB1, indicating that the immunosensor has a bright application prospect.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Aflatoxina B1 , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Ouro/química , Humanos , Imunoensaio/métodos , Limite de Detecção , Nanopartículas Metálicas/química
13.
Talanta ; 248: 123617, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35687949

RESUMO

The wide clinical application of d-penicillamine (D-PA) makes it inevitably accumulates in the environment, seriously threatening human health and the ecological environment. To better supervisory control D-PA, a highly sensitive and reliable photoelectrochemical (PEC) sensor based on gold nanoparticles (Au NPs) loaded on graphitic carbon nitride sheet and hexagonal NH2-UiO-66 composite (g-C3N4/Au/NH2-UiO-66) was synthesized. Tactfully using the strong bonding between D-PA and Au NPs and the effective carrier separation of Z-scheme heterojunction, the designed g-C3N4/Au/NH2-UiO-66 PEC sensor without an extra recognition unit exhibited a selective and sensitive photocurrent to D-PA. With the aid of UV diffuse reflectance spectra (UV-DRs), electron paramagnetic resonance (EPR) characterization, and free radical capture experiments, the electron transfer path of the PEC sensing system was deduced. The proposed g-C3N4/Au/NH2-UiO-66 PEC-based sensor achieved a low detection limit of 0.0046 µM (S/N = 3) with a wide linear response ranging from 10 nM to 400 µM. In addition, its good stability and selectivity also laid a good foundation for practical applications.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Técnicas Eletroquímicas , Ouro/química , Humanos , Nanopartículas Metálicas/química , Estruturas Metalorgânicas , Penicilamina , Ácidos Ftálicos
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 269: 120727, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34979470

RESUMO

In the paper, a novel fluorescent probe based on Ag2S QDs/g-C3N4 composite was synthesized by loading Ag2S quantum dots (Ag2S QDs) on the surface of g-C3N4 through in-situ synthesis method and developed to detect Nitrofurazone (NFZ) sensitively. The results showed that the linear detection range of Ag2S QDs/g-C3N4 to NFZ was 0-30 µM, with a low detection limit of 0.054 µM. The results of time-fluorescence-resolved spectroscopy and UV-vis absorption spectroscopy exhibited that the possible detection mechanism of Ag2S QDs/g-C3N4 to NFZ was proposed to be Internal Filtration Effect (IFE). Moreover, Multiwfn wavefunction analysis was employed to uncover the possible interaction between the Ag2S QDs/g-C3N4 and NFZ, thereby further revealing the fluorescence detection mechanism from the scale of atoms. Combining experiments and theoretical calculations, we proposed the sensing mechanism of the formation of non-fluorescent ground state complex linked by hydrogen bonds. This work indicated that the Ag2S QDs/g-C3N4 composite processed the ability to detect NFZ efficiently and sensitively.


Assuntos
Corantes Fluorescentes , Pontos Quânticos , Nitrofurazona , Espectrometria de Fluorescência
15.
J Colloid Interface Sci ; 608(Pt 1): 322-333, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34628312

RESUMO

Effective removal of antibiotics in the environment can be a demanding issue concerning the ecosystem and human health. Photocatalysis and peroxymonosulfate (PMS) oxidation have become important methods to effectively remove stubborn pollutants. In this work, by integrating these two technologies, an efficient system for degrading chloramphenicol (CAP) in water was proposed. The system was constructed by coupling strontium-doped lanthanum cobaltate (LSCO5) with chlorine-doped carbon nitride (CGCN). By doping, the increase of oxygen vacancy and the adjustment of bandgap were realized. Photoluminescence and electrochemical impedance experiments showed that the heterojunction can promote electron transfer and photogenerated carrier separation. Under the synergistic effect of PMS oxidation and photocatalysis, the prepared composite with an optimal loading of 40% LSCO5 can degrade 95.6% of CAP within 20 min. Degradation experiments on different pollutants proved the versatility of the catalytic system. The enhanced degradation mechanism of CAP was explored based on the assessment of the degradation efficiency of CAP, electron paramagnetic resonance (EPR), and quenching experiments. Through liquid chromatography-mass spectrometry (LC-MS) analysis, a possible route for CAP degradation was also proposed. This research provides some inspiration for the remediation of polluted water with perovskite-based catalyst under the synergistic effect of PMS and photocatalysis.


Assuntos
Cloranfenicol , Ecossistema , Humanos , Luz , Peróxidos
16.
Nanotechnology ; 33(11)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34874284

RESUMO

In this paper, a carbon nanofiber (CNF) hybrid nanomaterial composed of MnO-Sn cubes embedding in nitrogen-doped CNF (MnO-Sn@CNF) is synthesized through electrospinning and post-thermal reduction processes. It exhibits good electrochemical lithium-ion storage performance as the anode, such as high reversible capacity, outstanding cycle performance (754 mAh g-1at 1 A g-1after 1000 cycles), and good rate capability (447 mAh g-1at 5 A g-1). The excellent electrochemical properties are derived from a unique nanostructure design. MnO-Sn@CNF has a three-dimensional conductive network with a stable core-shell structure, which improves the electrical conductivity and mechanical stability of the materials. In addition, the mesopores on the surface of carbon fibers can shorten the diffusion distance of lithium ions and promote the combination of active sites of the material with lithium ions. The internal MnO and Sn form a heterostructure, which enhances the stability of the physical structure of the electrode material. This material design method provides a reference strategy for the development of high-performance lithium-ion batteries anode.

17.
Langmuir ; 37(28): 8426-8434, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34233119

RESUMO

CuCo2O4, a type of promising lithium-ion storage material, exhibits high electrochemical properties in lithium-ion batteries and enormous economic benefits. However, its practical application is limited by problems such as structural collapse and electrochemical stability during the charging and discharging process. In this work, the reduced graphene oxide (rGO)-coated CuCo2O4 (CuCo2O4/rGO) hollow microspheres were successfully prepared by electrostatic self-assembly. The CuCo2O4/rGO electrode shows an outstanding capability for lithium-ion storage and a remarkable rate capacity, e.g., 445 mA h g-1 at 5 A g-1. After 150 cycles at 0.1 A g-1, the reversible capacity of the CuCo2O4/rGO electrode is as high as 1080 mA h g-1, and it can still retain about 530 mA h g-1 in the 400th cycle at 1 A g-1. The hollow microspheres with mesoporous shells can cause electrolyte penetration into the spherical shell to effectively shorten the transfer distance of lithium ions, and the encapsulation of graphene improves the conductivity and stability of CuCo2O4, which endows CuCo2O4/rGO with a wonderful Li+ storage performance. It is proved that this is an efficient method to improve the electrochemical performance of metal compounds for better applications in energy storage.

18.
Biosens Bioelectron ; 189: 113373, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34090152

RESUMO

Aflatoxin B1 (AFB1) is the most toxic mycotoxin, is widely found in foods and animal feeds, and can pose a serious threat to our lives. A label-free photoelectrochemical (PEC) immunosensor was fabricated for the sensitive detection of AFB1. A Z-scheme heterojunction of gold nanoparticles (Au NPs) loaded on graphitic carbon nitride sheet and tungsten trioxide sphere composite (g-C3N4/Au/WO3) acted as the highly sensitive platform. The g-C3N4/Au/WO3 is capable, not only of immobilizing antibodies via Au NPs, but also enhancing the separation of electron-hole pairs due to its good energy band matching efficiency. The mechanism of photo-generated electron/hole transfer on g-C3N4/Au/WO3 was explored using scavengers to eliminate active components. On this basis, an electron transfer pathway for the immunosensor was deduced. The PEC immunosensor displayed a linear concentration range from 1.0 pg mL-1 to 100 ng mL-1 and a low detection limit of 0.33 pg mL-1 (S/N = 3) for AFB1. Good reproducibility, stability, and specificity provide a solid foundation for the practical application of this immunosensor.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Aflatoxina B1 , Animais , Técnicas Eletroquímicas , Ouro , Imunoensaio , Limite de Detecção , Reprodutibilidade dos Testes
19.
ACS Appl Mater Interfaces ; 13(21): 24785-24794, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34013732

RESUMO

A three-dimensional (3D) printing method has been developed for preparing a lithium anode base on 3D-structured copper mesh current collectors. Through in situ observations and computer simulations, the deposition behavior and mechanism of lithium ions in the 3D copper mesh current collector are clarified. Benefiting from the characteristics that the large pores can transport electrolyte and provide space for dendrite growth, and the small holes guide the deposition of dendrites, the 3D Cu mesh anode exhibits excellent deposition and stripping capability (50 mAh cm-2), high-rate capability (50 mA cm-2), and a long-term stable cycle (1000 h). A full lithium battery with a LiFePO4 cathode based on this anode exhibits a good cycle life. Moreover, a 3D fully printed lithium-sulfur battery with a 3D printed high-load sulfur cathode can easily charge mobile phones and light up 51 LED indicators, which indicates the great potential for the practicability of lithium-metal batteries with the characteristic of high energy densities. Most importantly, this unique and simple strategy is also able to solve the dendrite problem of other secondary metal batteries. Furthermore, this method has great potential in the continuous mass production of electrodes.

20.
ACS Appl Mater Interfaces ; 13(1): 660-670, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33375778

RESUMO

CoSnO3, as a high theoretical capacity electrode material (1235 mAh g-1) for lithium storage, has been limited due to its low rate performance, huge volume expansion, and an unstable solid electrolyte interface (SEI). A rational design of the material structure including carbon coating can effectively solve the problems. To buffer the volume change and achieve a superior rate capability, hollow CoSnOx nanocubes encapsulated in 1D N-doped carbon nanofibers (CNFs) were fabricated by electrospinning, showing a final discharge capacity of 733 mAh g-1 with a 96% capacity retention after 800 cycles at a current rate of 1 A g-1 and a brilliant rate performance (49% capacity maintenance with the current variation from 0.1 to 5 A g-1). Absolutely, these outstanding characteristics are ascribed to the unique structure. The N-doped carbon fibers outside not only prevent the volume expansion during Li+ intercalation/extraction but also improve the electron transport in the electrode. Most significantly, the hollow structure offers enough vacant space to buffer the internal strain, while the porous structure shortens the Li+ diffusion distance. Combined with electrospinning technology, this study shares a novel idea for designing various composites with rational structures and outstanding electrochemical properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...