Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Asian J ; 14(9): 1549-1556, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-30924601

RESUMO

A synchronous carbon-coating and interfacial-functionalizing approach is proposed for the fabrication of Mo-doped Mox Ti1-x O2-δ nanotubes (C@IF-MTNTs) under mild hydrothermal reaction with subsequent annealing as advanced catalyst supports for PtRu nanoparticles (NPs) towards methanol electrooxidation. The carbonation of glucose and Mo-doping takes place simultaneously at the interface of pristine anatase TiO2 nanotubes (TNTs), generating a unique concentric multilayered one-dimensional (1D) structure with crystalline an anatase/rutile mixed-phase TiO2 core and Mo-functionalized interface and subsequently a carbon shell. The obtained PtRu/C@IF-MTNTs catalyst exhibits an over 2 times higher mass activity with comparable durability than that of the unmodified PtRu/C@TNTs catalyst and over 1.7 times higher mass activity with over 20 % higher stability than that of PtRu/C catalyst. Such superior catalytic performance towards methanol electrooxidation is ascribed to the Mo-functionalized interface, concentric multilayered 1D architecture, and anatase/rutile mixed-phase core, which facilitates the charge transport through 1D structural support and electronic interaction between C@IF-MTNTs and ultrafine PtRu NPs. This work reveals the critical application of a 1D interfacial functionalized architecture for advanced energy storage and conversion.

2.
Inorg Chem ; 58(3): 2122-2132, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30672708

RESUMO

With the expansion and deepening of scientific research, dual-functional or multifunctional materials are urgently needed to replace those for single application. Herein, a fluorescence sensing system based on an In(III)-organic complex with in situ Lewis acid sites has been constructed, exhibiting high sensitivity for the detection of Fe(III) ions with a low detection limit of 3.95 µM and a short response time of within 10 s. It is noteworthy that the quenched fluorescence of the Fe(III)-incorporated sample could be reopened linearly with an increase of alkalinity, followed by the reactivation of its functionality to identify Fe(III) ions, forming an alternate detection cycle for Fe(III) and pH with off-on-off fluorescent switch characteristics. Considering its unique molecular recognition capability, an advanced three-input (Fe(III), EDTA, and OH-) and two-output (B440 and G489) Boolean logic operation comprising BUFF, NOT, OR, and AND logic gates was integrated, possessing potential applications in intelligent multianalyte sensing systems.

3.
Methods Mol Biol ; 1572: 153-167, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28299687

RESUMO

A novel mini-electrochemical system has been developed for evaluating cytotoxicity of anticancer drugs based on trace cell samples. The mini-electrochemical system was integrated by using pencil graphite modified with threonine as working electrode, an Ag/AgCl reference electrode and a micropipet tip as electrochemical cell. The mini-electrochemical system dramatically reduces sample volumes from 500 µL in a traditional electrochemical system to 10 µL, and exhibits excellent electrocatalytic activity toward oxidation of purine from MCF-7 cells due to increased sensitivity provided by threonine. Moreover, the relationship between peak current and the cell concentration in the range from 3.0 × l03 to 7.0 × l06 cells/mL was studied, and a nonlinear exponential relationship between them was established over a wide concentration range. In evaluating the effect of anticancer drugs on cell viability, the results of drug cytotoxicity test based on cyclophosphamide were in close agreement with classical 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assays. The proposed device is so simple, cheap, and easy to operate that it could be applied to single-use applications. The mini-electrochemical system proved to be a useful tool and can be applied to electrochemical studies of cancer cells as well as other biological samples such as proteins and DNA.


Assuntos
Antineoplásicos/farmacologia , Técnicas Biossensoriais , Técnicas Eletroquímicas , Eletrodos , Grafite , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Sobrevivência Celular/efeitos dos fármacos , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA