Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38730853

RESUMO

This study focuses on the development of high-performance insulation materials to address the critical issue of reducing building energy consumption. Magnesium-aluminum layered double hydroxides (LDHs), known for their distinctive layered structure featuring positively charged brucite-like layers and an interlayer space, have been identified as promising candidates for insulation applications. Building upon previous research, which demonstrated the enhanced thermal insulation properties of methyl trimethoxysilane (MTS) functionalized LDHs synthesized through a one-step in situ hydrothermal method, this work delves into the systematic exploration of particle size regulation and its consequential effects on the thermal insulation performance of coatings. Our findings indicate a direct correlation between the dosage of MTS and the particle size of LDHs, with an optimal dosage of 4 wt% MTS yielding LDHs that exhibit a tightly interconnected hydrotalcite lamellar structure. This specific modification resulted in the most significant improvement in thermal insulation, achieving a temperature difference of approximately 25.5 °C. Furthermore, to gain a deeper understanding of the thermal insulation mechanism of MTS-modified LDHs, we conducted a thorough characterization of their UV-visible diffuse reflectance and thermal conductivity. This research contributes to the advancement of LDH-based materials for use in thermal insulation applications, offering a sustainable solution to energy conservation in the built environment.

2.
Polymers (Basel) ; 16(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38399840

RESUMO

Water-based chloroprene latex is a solvent-free, environmentally friendly adhesive. Currently, its market demand is growing rapidly. However, there are problems such as a lack of heat resistance and poor mechanical properties, which limit its application. The introduction of vinyl-POSS (OVS) into the resin structure can effectively improve the thermal stability of chloroprene adhesives. In this paper, modified waterborne chloroprene latex was prepared by copolymerization of methyl methacrylate and OVS with chloroprene latex. The results showed that vinyl-POSS was successfully grafted onto the main chain of the waterborne chloroprene latex, and the modified waterborne chloroprene latex had good storage stability. With the increase in vinyl-POSS, the tensile strength of the chloroprene latex firstly increased and then decreased, the tensile property (peel strength of 20.2 kgf) was maintained well at a high temperature (100 °C), and the thermal stability of the chloroprene latex was improved. When the addition amount was 4%, the comprehensive mechanical properties were their best. This study provides a new idea for the construction of a new and efficient waterborne chloroprene latex system and provides more fields for the practical application of waterborne chloroprene latex. This newly developed vinyl-POSS modified chloroprene latex has great application potential for use in home furniture, bags, and seat cushions.

3.
Materials (Basel) ; 16(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37374647

RESUMO

The development of high-performance insulation materials that facilitate the reduction in building energy consumption is of paramount significance. In this study, magnesium-aluminum-layered hydroxide (LDH) was prepared by the classical hydrothermal reaction. By implementing methyl trimethoxy siloxane (MTS), two different MTS-functionalized LDHs were prepared via a one-step in situ hydrothermal synthesis method and a two-step method. Furthermore, using techniques, such as X-ray diffraction, infrared spectroscopy, particle size analysis, and scanning electron microscopy, we evaluated and analyzed the composition, structure, and morphology of the various LDH samples. These LDHs were then employed as inorganic fillers in waterborne coatings, and their thermal-insulation capabilities were tested and compared. It was found that MTS-modified LDH via a one-step in situ hydrothermal synthesis method (M-LDH-2) exhibited the best thermal insulating properties by displaying a thermal-insulation-temperature difference (ΔT) of 25 °C compared with the blank panel. In contrast, the panels coated with unmodified LDH and the MTS-modified LDH via the two-step method exhibited thermal-insulation-temperature difference values of 13.5 °C and 9.5 °C, respectively. Our investigation involved a comprehensive characterization of LDH materials and coating films, unveiling the underlying mechanism of thermal insulation and establishing the correlation between LDH structure and the corresponding insulation performance of the coating. Our findings reveal that the particle size and distribution of LDHs are critical factors in dictating their thermal-insulation capabilities in the coatings. Specifically, we observed that the MTS-modified LDH, prepared via a one-step in situ hydrothermal approach, possessed a larger particle size and wider particle size distribution, resulting in superior thermal-insulation effectiveness. In contrast, the MTS-modified LDH via the two-step method exhibited a smaller particle size and narrow particle size distribution, causing a moderate thermal-insulation effect. This study has significant implications for opening up the potential for LDH-based thermal-insulation coatings. We believe the findings can promote the development of new products and help upgrade industries, while contributing to local economic growth.

4.
Polymers (Basel) ; 15(4)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36850327

RESUMO

This study investigated the impact of surface basicity on the performance of layered double hydroxides (LDHs) as heat stabilizers for polyvinyl chloride (PVC). LDHs with varying surface basicity were synthesized and characterized using XRD, SEM, BET, and CO2-TPD. The LDHs were then combined with zinc stearate and dibenzoylmethane to create an environmentally friendly heat stabilizer and added to PVC. The resulting PVC composites were evaluated for thermal stability using the oven-aging method. The results showed that a lower Mg/Al molar ratio (2.0) improved the initial whiteness and long-term thermal stability of PVC composites compared to higher ratios (2.5, 3.0, and 3.5). Replacing Mg with Zn in the LDHs had a similar effect to that of reducing the Mg/Al ratio. Crosslinking the laminae of LDHs with 5% silane coupling agent KH-560 reduced the surface basicity of LDHs by 79%, increasing the chromaticity index, b*, and thermal stability time of PVC composites by 48% and 14%, respectively. A descriptive relationship was established between the structure and surface basicity of LDHs and the initial whiteness and long-term thermal stability of PVC composites.

5.
Polymers (Basel) ; 16(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38201751

RESUMO

Vinyl-capped cationic waterborne polyurethane (CWPU) was prepared using isophorone diisocyanate (IPDI), polycarbonate diol (PCDL), N-methyldiethanolamine (MDEA), and trimethylolpropane (TMP) as raw materials and hydroxyethyl methacrylate (HEMA) as a capping agent. Then, a crosslinked FPUA composite emulsion with polyurethane (PU) as the shell and fluorinated acrylate (PA) as the core was prepared by core-shell emulsion polymerization with CWPU as the seed emulsion, together with dodecafluoroheptyl methacrylate (DFMA), diacetone acrylamide (DAAM), and methyl methacrylate (MMA). The effects of the core-shell ratio of PA/PU on the surface properties, mechanical properties, and heat resistance of FPUA emulsions and films were investigated. The results showed that when w(PA) = 30~50%, the stability of FPUA emulsion was the highest, and the particles showed a core-shell structure with bright and dark intersections under TEM. When w(PA) = 30%, the tensile strength reached 23.35 ± 0.08 MPa. When w(PA) = 50%, the fluorine content on the surface of the coating film was 14.75% and the contact angle was as high as 98.5°, which showed good hydrophobicity; the surface flatness of the film was observed under AFM. It is found that the tensile strength of the film increases and then decreases with the increase in the core-shell ratio and the heat resistance of the FPUA film is gradually increased. The FPUA film has excellent properties such as good impact resistance, high flexibility, high adhesion, and corrosion resistance.

6.
Polymers (Basel) ; 15(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38231956

RESUMO

The incorporation of a naphthyl curing agent (NCA) can enhance the thermal stability of pressure-sensitive adhesives (PSAs). In this study, a PSA matrix was synthesized using a solution polymerization process and consisted of butyl acrylate, acrylic acid, and an ethyl acrylate within an acrylic copolymer. Benzoyl peroxide was used as an initiator during the synthesis. To facilitate the UV curing of the solvent-borne PSAs, glycidyl methacrylate was added to introduce unsaturated carbon double bonds. The resulting UV-curable acrylic PSA tapes exhibited longer holding times at high temperatures (150 °C) compared to uncross-linked PSA tapes, without leaving any residues on the substrate surface. The thermal stability of the PSA was further enhanced by adding more NCA and increasing the UV dosage. This may be attributed to the formation of cross-linking networks within the polymer matrix at higher doses. The researchers successfully balanced the adhesion performance and thermal stability by modifying the amount of NCA and UV radiation, despite the peel strength declining and the holding duration shortening. This research also investigated the effects of cross-linking density on gel content, molecular weight, glass transition temperature, and other properties of the PSAs.

7.
Opt Express ; 29(22): 36840-36856, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34809085

RESUMO

We investigate in detail the azimuthal and radial modulation (i.e., the azimuthal order lj and radial order pj with j = 1, 2) of double-four-wave mixing (double-FWM) by use of two higher-order Laguerre-Gaussian (LG) beams in a Landau quantized graphene ensemble. A pair of weak probe pulses in the graphene ensemble interacts with two LG beams and thus two vortex FWM fields with the opposite vorticity are subsequently generated. In combination with numerical simulations, we reveal that (i) there appear l1 + l2 periods of phase jumps in the phase profiles under any conditions; (ii) p + 1 concentric rings emerge in the intensity profile and the strength is mainly concentrated on the inner ring when the two LG beams have the same radial orders (i.e., p1 = p2 = p); (iii) there are p raised narrow rings occurring in the phase profile in the case of p1 = p2 = p and l1 ≠ l2, and the raised narrow rings would disappear when p1 = p2 and l1 = l2; (iv) pmax + 1 concentric rings appear in the intensity profile, meanwhile, |p1 - p2| convex discs and pmin raised narrow rings emerge in the phase diagram in the case of p1 ≠ p2, here pmax = max(p1, p2) and pmin = min(p1, p2). Moreover, the two generated FWM fields have the same results, and the difference is that the phase jumps are completely opposite. These findings may have potential application in graphene-based nonlinear optical device by using LG beams with adjustable mode orders.

8.
Phys Chem Chem Phys ; 21(27): 15222-15232, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31250877

RESUMO

Star-shaped polymers have received significant attention and have been widely developed for prospective applications in drug delivery owing to their topological structure and unique physiochemical characteristics. The anticancer drug doxorubicin (DOX) was used as a model drug, and four/six-arm star-shaped block polymeric micelles were employed as the carriers. The dissipative particle dynamics (DPD) method was adopted to simulate the formation of micelles, the effects of the hydrophobic/hydrophilic block ratio on the micellar structure and drug-loading performance, the effect of the drug loading content on the micellar morphology, and the effect of the pH-sensitive block ratio on the drug release properties. Under neutral conditions (pH = 7.4), increasing the hydrophobic block ratio reduces the stability of the micelle structure but could improve its drug loading performance. Increasing the pH-sensitive block (DEAEMA) ratio is beneficial to the drug loading performance of the mikto-arm star-shaped polymeric micelles and is detrimental to the drug loading performance of the herto-arm star-shaped polymeric micelles. After comparing the structural changes, radial distribution function (RDF) and mean square displacement (MSD) of the polymeric micelles with different pH-sensitive block ratios under weakly acidic conditions (pH = 5.0), the drug release properties of the drug-loaded micelles were systematically analysed. The results showed that the higher the proportion of the pH-sensitive block in the polymeric micelles, the better their pH-response performance, and the looser the structure of the micelles during the release process. A too high or too low ratio of pH-sensitive blocks in the polymeric micelles was detrimental to drug release performance. This study could provide theoretical support for the structural design and development of novel functional block polymers.


Assuntos
Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos , Micelas , Simulação de Dinâmica Molecular , Antineoplásicos/química , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/química , Doxorrubicina/química , Concentração de Íons de Hidrogênio , Polímeros/química
9.
Sci Rep ; 8(1): 1530, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29367751

RESUMO

In this paper, we carry out a theoretical investigation on the population dynamics of graphene system under continuous-wave (cw) laser and chirped pulse excitation. Results of our numerical simulations reveal that complete population transfer from an initially occupied ground state to the initially unoccupied excited states can be achieved by choosing appropriate values of the chirp rate, the laser field intensity and frequency, as well as other system parameters. Also, we observe coherent Rabi-like population oscillations between the initial ground state and the excited final state. It is induced by the combined effect of cw and chirped-pulse laser fields. These results will contribute to the understanding of carrier-carrier and carrier-phonon interactions in graphene system, and may find applications in graphene-based high-speed electronic and optoelectronic devices.

10.
Opt Express ; 20(7): 7870-85, 2012 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-22453461

RESUMO

A scheme for realizing two-dimensional (2D) atom localization is proposed based on controllable spontaneous emission in a coherently driven cycle-configuration atomic system. As the spatial-position-dependent atom-field interaction, the frequency of the spontaneously emitted photon carries the information about the position of the atom. Therefore, by detecting the emitted photon one could obtain the position information available, and then we demonstrate high-precision and high-resolution 2D atom localization induced by the quantum interference between the multiple spontaneous decay channels. Moreover, we can achieve 100% probability of finding the atom at an expected position by choosing appropriate system parameters under certain conditions.


Assuntos
Modelos Químicos , Fótons , Teoria Quântica , Simulação por Computador
11.
Acta Crystallogr Sect E Struct Rep Online ; 65(Pt 10): m1214-5, 2009 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21577739

RESUMO

In the title coordination polymer, [AgTb(C(7)H(3)NO(4))(C(7)H(4)NO(4))(C(2)O(4))(0.5)(H(2)O)(2)](n), the Tb(III) ion is eight-coordinated by three O atoms from three different pydc (H(2)pydc = pyridine-3,5-dicarboxylic acid) ligands, one O atom from one Hpydc ligand, two O atoms from one oxalate ligand and two water mol-ecules in a distorted square-anti-prismatic geometry. The Ag(I) ion is coordinated in an almost linear fashion by two pyridyl N atoms from one pydc and one Hpydc ligand and has weak inter-actions with two carboxyl-ate O atoms. The carboxyl-ate groups of pydc and Hpydc ligands link Tb centers, forming a one-dimensional chain. The oxalate adopts a tetra-dentate bis-chelating coordination mode, connecting the chains into a two-dimensional layer. These layers are further assembled via [Ag(pydc)(Hpydc)] pillars and O-H⋯O and C-H⋯O hydrogen bonds into a three-dimensional coordination framework.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...