Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Synth Syst Biotechnol ; 9(1): 144-151, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38322110

RESUMO

Transcription factor engineering has unique advantages in improving the performance of microbial cell factories due to the global regulation of gene transcription. Omics analyses and reverse engineering enable learning and subsequent incorporation of novel design strategies for further engineering. Here, we identify the role of the global regulator IhfA for overproduction of free fatty acids (FFAs) using CRISPRi-facilitated reverse engineering and cellular physiological characterization. From the differentially expressed genes in the ihfAL- strain, a total of 14 beneficial targets that enhance FFAs production by above 20 % are identified, which involve membrane function, oxidative stress, and others. For membrane-related genes, the engineered strains obtain lower cell surface hydrophobicity and increased average length of membrane lipid tails. For oxidative stress-related genes, the engineered strains present decreased reactive oxygen species (ROS) levels. These gene modulations enhance cellular robustness and save cellular resources, contributing to FFAs production. This study provides novel targets and strategies for engineering microbial cell factories with improved FFAs bioproduction.

2.
Nutrients ; 14(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36501222

RESUMO

Curcumin possesses beneficial biological functions, namely anti-inflammation and anti-diabetic functions. However, due to its low solubility and crystallinity, its applications are limited. In this work, curcumin was encapsulated in casein micelles in order to form curcumin-casein nanoparticles by ultrasound treatment (5 min). The ultrasound treatment induced the entry of the hydrophobic groups to the inner micelles and the polar sulfydryl groups to the surface of the micelles in order to form compact curcumin-casein nanoparticles of an appropriate size (100-120 nm) for cellular endocytosis. The product exhibited excellent stability during 8 months of cold storage, 6 days at room temperature, and 2 days at body temperature. Advanced in vitro experiments demonstrated that curcumin-casein nanoparticles displayed significantly greater inhibitory activity against the proliferation and proinflammatory cytokines of human fibroblast-like synoviocyte-osteo arthritis (HFLS-OA) cells and HFLS-rheumatoid (RA) cells than native curcumin due to better cellular uptake as a result of the low crystallinity and the appropriate nano-size of the nano-form. The results provide a reference for the use of ultrasound treatment to encapsulate other drug molecules and curcumin-casein nanoparticles as potential treatment for arthritis.


Assuntos
Curcumina , Nanopartículas , Humanos , Curcumina/farmacologia , Curcumina/química , Caseínas/farmacologia , Caseínas/química , Nanopartículas/química , Micelas , Solubilidade , Tamanho da Partícula
3.
RSC Adv ; 11(8): 4646-4653, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35424385

RESUMO

The aim of this study was to improve the stability of eugenol-casein nanoparticles (EL-CS-NPs) through polyethylene glycol (PEG) modification. The results show that modifying the EL-CS-NPs with PEG after loading with eugenol (EL) gives PEG-EL-CS-NPs, with increased stability. The NPs modified with higher-molecular-weight PEG showed better stability. A CS/PEG ratio of 200 : 1 (w/w) yielded the NPs with the best stability. A PEG20 K-EL-CS-NP dispersion remained stable in cold storage for over one year, and also exhibited stronger inhibitory effects against Colletotrichum musae inoculated on bananas than an EL-CS-NP dispersion, since it showed more prolonged sustained release of EL than the EL-CS-NP dispersion. Lyophilized PEG20 K-EL-CS-NP powder showed better effectiveness against mold on bread than lyophilized EL-CS-NPs powder. Using PEG to modify CS-NPs shows potential for improving the stability of CS-NPs loaded with hydrophobic substances for delivery in the fields of food and agriculture.

4.
Biol Pharm Bull ; 41(6): 885-890, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29618699

RESUMO

Six triterpenic acids were separated and purified from the ethyl acetate extractive fraction of ethanol extracts of Potentilla parvifolia FISCH. using a variety of chromatographic methods. The neuroprotective effects of these triterpenoids were investigated in the present study, in which the okadaic acid induced neurotoxicity in human neuroblastoma SH-SY5Y cells were used as an Alzheimer's disease cell model in vitro. The cell model was established with all trans-retinoic acid (5 µmol/L, 4 d) and okadaic acid (40 nmol/L, 6 h) treatments to induce tau phosphorylation and synaptic atrophy. Subsequently, the neuroprotective effects of these triterpenic acids were evaluated in vitro by this cell model. Results from the Western blot and morphology analysis suggested that compounds 3-6 had the better neuroprotective effects. Furthermore, we tested the level of mitochondrial reactive oxygen species and mitochondrial membrane potential of these compounds in SH-SY5Y cells by flow cytometry technology to investigate the potential neuroprotective mechanism of these compounds. All of the results indicated that maybe the mechanism of compounds 5 and 6 is to protect the cell from mitochondrial oxidative stress injuries.


Assuntos
Fármacos Neuroprotetores/farmacologia , Potentilla , Triterpenos/farmacologia , Doença de Alzheimer , Diferenciação Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Ácido Okadáico , Estresse Oxidativo/efeitos dos fármacos , Componentes Aéreos da Planta , Espécies Reativas de Oxigênio/metabolismo , Tretinoína
5.
Chem Biodivers ; 14(6)2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28294523

RESUMO

Potentilla parvifolia Fisch. (Rosaceae) is a traditional medicinal plant in P. R. China. In this study, seven flavonoids, ayanin (1), tricin (2), quercetin (3), tiliroside (4), miquelianin (5), isoquercitrin (6), and astragalin (7), were separated and purified from ethyl acetate extractive fractions from ethanol extracts of P. parvifolia using a combination of sevaral chromatographic methods. The human neuroblastoma SH-SY5Y cells were differentiated with all trans-retinoic acid and treated with okadaic acid to induce tau protein phosphorylation and synaptic atrophy, which could establish an Alzheimer's disease cell model. The neuroprotective effects of these flavonoids in cellular were evaluated in vitro by this cell model. Results from the Western blot and morphology analysis suggested that compounds 3 and 4 had the better neuroprotective effects.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Flavonoides/isolamento & purificação , Neuroblastoma/tratamento farmacológico , Fármacos Neuroprotetores/isolamento & purificação , Potentilla/química , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Flavonoides/farmacologia , Humanos , Neuroblastoma/patologia , Fármacos Neuroprotetores/farmacologia , Fosforilação , Extratos Vegetais/química , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...