Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 905: 167079, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37714349

RESUMO

In wild animals, diet and gut microbiota interactions are critical moderators of metabolic functions and are highly contingent on habitat conditions. Challenged by the extreme conditions of high-altitude environments, the strategies implemented by highland animals to adjust their diet and gut microbial composition and modulate their metabolic substrates remain largely unexplored. By employing a typical human commensal species, the Eurasian tree sparrow (Passer montanus, ETS), as a model species, we studied the differences in diet, digestive tract morphology and enzyme activity, gut microbiota, and metabolic energy profiling between highland (the Qinghai-Tibet Plateau, QTP; 3230 m) and lowland (Shijiazhuang, Hebei; 80 m) populations. Our results showed that highland ETSs had enlarged digestive organs and longer small intestinal villi, while no differences in key digestive enzyme activities were observed between the two populations. The 18S rRNA sequencing results revealed that the dietary composition of highland ETSs were more animal-based and less plant-based than those of the lowland ones. Furthermore, 16S rRNA sequencing results suggested that the intestinal microbial communities were structurally segregated between populations. PICRUSt metagenome predictions further indicated that the expression patterns of microbial genes involved in material and energy metabolism, immune system and infection, and xenobiotic biodegradation were strikingly different between the two populations. Analysis of liver metabolomics revealed significant metabolic differences between highland and lowland ETSs in terms of substrate utilization, as well as distinct sex-specific alterations in glycerophospholipids. Furthermore, the interplay between diet, liver metabolism, and gut microbiota suggests a dietary shift resulting in corresponding changes in gut microbiota and metabolic functions. Our findings indicate that highland ETSs have evolved to optimize digestion and absorption, rely on more protein-rich foods, and possess gut microbiota tailored to their dietary composition, likely adaptive physiological and ecological strategies adopted to cope with extreme highland environments.


Assuntos
Microbioma Gastrointestinal , Microbiota , Passeriformes , Animais , Masculino , Feminino , Humanos , Microbioma Gastrointestinal/fisiologia , RNA Ribossômico 16S/genética , Dieta/veterinária , Adaptação Psicológica
2.
Front Microbiol ; 14: 1178575, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37333647

RESUMO

Introduction: Vibriosis causes enormous economic losses of marine fish. The present study investigated the intestinal microbial response to acute infection of half-smooth tongue sole with different-dose Vibrio alginolyticus within 72 h by metagenomic sequencing. Methods: The inoculation amount of V. alginolyticus for the control, low-dose, moderate-dose, and high-dose groups were 0, 8.5 × 101, 8.5 × 104, and 8.5 × 107 cells/g respectively, the infected fish were farmed in an automatic seawater circulation system under a relatively stable temperature, dissolved oxygen and photoperiod, and 3 ~ 6 intestinal samples per group with high-quality DNA assay were used for metagenomics analysis. Results: The acute infections with V. alginolyticus at high, medium, and low doses caused the change of different-type leukocytes at 24 h, whereas the joint action of monocytes and neutrophils to cope with the pathogen infection only occurred in the high-dose group at 72 h. The metagenomic results suggest that a high-dose V. alginolyticus infection can significantly alter the intestinal microbiota, decrease the microbial α-diversity, and increase the bacteria from Vibrio and Shewanella, including various potential pathogens at 24 h. High-abundance species of potential pathogens such as V. harveyii, V. parahaemolyticus, V. cholerae, V. vulnificus, and V. scophthalmi exhibited significant positive correlations with V. alginolyticus. The function analysis revealed that the high-dose inflection group could increase the genes closely related to pathogen infection, involved in cell motility, cell wall/ membrane/envelope biogenesis, material transport and metabolism, and the pathways of quorum sensing, biofilm formation, flagellar assembly, bacterial chemotaxis, virulence factors and antibiotic resistances mainly from Vibrios within 72 h. Discussion: It indicates that the half-smooth tongue sole is highly likely to be a secondary infection with intestinal potential pathogens, especially species from Vibrio and that the disease could become even more complicated because of the accumulation and transfer of antibiotic-resistance genes in intestinal bacteria during the process of V. alginolyticus intensified infection.

3.
Sci Total Environ ; 856(Pt 2): 159270, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36208741

RESUMO

Microplastics (MPs) pollution in aquatic environment has attracted global attention in recent years. To evaluate the potential toxic effects of MPs in freshwater cultured fish, grass carps (Ctenopharyngodon idella) (body length: 7.7 ± 0.1 cm, wet weight: 6.28 ± 0.23 g) were exposed to different sizes (0.5 µm, 15 µm) and concentrations (100 µg/L, 500 µg/L) of polystyrene microplastics (PS-MPs) suspension for 7 and 14 days, followed by 7 days of depuration, detecting the variations in growth rate, histological structure, oxidative response and intestinal microbiome. Our results indicate that MP toxicity elicited significant size- and concentration-dependent responses by grass carp. MP exposure caused obvious decrease in growth rate on day 14 but not on day 7. Additionally, MPs with large size and high concentration caused more severe intestinal damage and less weight gain, while MP particles with small size and high concentration induced more severe liver congestion and stronger oxidative stress. MP exposure dramatically shifted the gut microbial composition, with the top 10 genera in abundance being associated with the diameter and concentration of the MPs. After 7 days of depuration, only superoxide dismutase and malondialdehyde in liver, showed a tendency to recover to the initial values. Even though the differences in the gut microbial community between the control and treatment groups disappeared, and the proportion of potential pathogenic bacteria in intestine was still high. Thus, it is clear that a short-term depuration period of 7 days is not enough for complete normalization.


Assuntos
Carpas , Microbioma Gastrointestinal , Animais , Microplásticos/toxicidade , Poliestirenos/toxicidade , Plásticos , Água Doce
4.
FEMS Microbiol Ecol ; 91(10)2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26362922

RESUMO

Despite the economic importance of fish, the ecology and metabolic capacity of fish microbiomes are largely unknown. Here, we sequenced the metatranscriptome of the intestinal microbiota of grass carp, Ctenopharyngodon idellus, a freshwater herbivorous fish species. Our results confirmed previous work describing the bacterial composition of the microbiota at the phylum level as being dominated by Firmicutes, Fusobacteria, Proteobacteria and Bacteriodetes. Comparative transcriptomes of the microbiomes of fish fed with different experimental diets indicated that the bacterial transcriptomes are influenced by host diet. Although hydrolases and cellulosome-based systems predicted to be involved in degradation of the main chain of cellulose, xylan, mannan and pectin were identified, transcripts with glycoside hydrolase modules targeting the side chains of noncellulosic polysaccharides were more abundant. Predominant 'COG' (Clusters of Orthologous Group) categories in the intestinal microbiome included those for energy production and conversion, as well as carbohydrate and amino acid transport and metabolism. These results suggest that the grass carp intestinal microbiome functions in carbohydrate turnover and fermentation, which likely provides energy for both host and microbiota. Grass carp intestinal microbiome thus reflects its evolutionary adaption for harvesting nutrients for an herbivore with a high-throughput nutritional strategy that is not dominated by cellulose digestion but rather the degradation of intracellular polysaccharides.


Assuntos
Carpas/microbiologia , Fusobactérias/metabolismo , Microbioma Gastrointestinal/fisiologia , Plantas/metabolismo , Proteobactérias/metabolismo , Animais , Celulose/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Mananas/metabolismo , Pectinas/metabolismo , Transcriptoma , Xilanos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...