Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 128, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472451

RESUMO

Epigenetic dysregulation that leads to alterations in gene expression and is suggested to be one of the key pathophysiological factors of Parkinson's disease (PD). Here, we found that α-synuclein preformed fibrils (PFFs) induced histone H3 dimethylation at lysine 9 (H3K9me2) and increased the euchromatic histone methyltransferases EHMT1 and EHMT2, which were accompanied by neuronal synaptic damage, including loss of synapses and diminished expression levels of synaptic-related proteins. Furthermore, the levels of H3K9me2 at promoters in genes that encode the synaptic-related proteins SNAP25, PSD95, Synapsin 1 and vGLUT1 were increased in primary neurons after PFF treatment, which suggests a linkage between H3K9 dimethylation and synaptic dysfunction. Inhibition of EHMT1/2 with the specific inhibitor A-366 or shRNA suppressed histone methylation and alleviated synaptic damage in primary neurons that were treated with PFFs. In addition, the synaptic damage and motor impairment in mice that were injected with PFFs were repressed by treatment with the EHMT1/2 inhibitor A-366. Thus, our findings reveal the role of histone H3 modification by EHMT1/2 in synaptic damage and motor impairment in a PFF animal model, suggesting the involvement of epigenetic dysregulation in PD pathogenesis.


Assuntos
Transtornos Motores , Doença de Parkinson , Animais , Camundongos , Histonas/metabolismo , Metilação , Neurônios/metabolismo , alfa-Sinucleína/metabolismo
2.
Sci Signal ; 17(829): eadk8249, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530880

RESUMO

Mutations in the gene encoding the lysosomal enzyme glucocerebrosidase (GCase) are responsible for Gaucher disease (GD) and are considered the strongest genetic risk factor for Parkinson's disease (PD) and Lewy body dementia (LBD). GCase deficiency leads to extensive accumulation of glucosylceramides (GCs) in cells and contributes to the neuropathology of GD, PD, and LBD by triggering chronic neuroinflammation. Here, we investigated the mechanisms by which GC accumulation induces neuroinflammation. We found that GC accumulation within microglia induced by pharmacological inhibition of GCase triggered STING-dependent inflammation, which contributed to neuronal loss both in vitro and in vivo. GC accumulation in microglia induced mitochondrial DNA (mtDNA) leakage to the cytosol to trigger STING-dependent inflammation. Rapamycin, a compound that promotes lysosomal activity, improved mitochondrial function, thereby decreasing STING signaling. Furthermore, lysosomal damage caused by GC accumulation led to defects in the degradation of activated STING, further exacerbating inflammation mediated by microglia. Thus, limiting STING activity may be a strategy to suppress neuroinflammation caused by GCase deficiency.


Assuntos
Doença de Gaucher , Doença de Parkinson , Animais , Camundongos , alfa-Sinucleína/metabolismo , Doença de Gaucher/genética , Doença de Gaucher/patologia , Glucosilceramidas/metabolismo , Inflamação/metabolismo , Lisossomos/metabolismo , Microglia/metabolismo , Doenças Neuroinflamatórias , Doença de Parkinson/metabolismo
3.
Hum Mol Genet ; 33(1): 64-77, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37756636

RESUMO

GGGGCC (G4C2) hexanucleotide repeat expansion (HRE) in the first intron of the chromosome 9 open reading frame 72 (C9ORF72) gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Among the five dipeptide repeat proteins translated from G4C2 HRE, arginine-rich poly-PR (proline:arginine) is extremely toxic. However, the molecular mechanism responsible for poly-PR-induced cell toxicity remains incompletely understood. Here, we found that poly-PR overexpression triggers severe DNA damage in cultured cells, primary cortical neurons, and the motor cortex of a poly-PR transgenic mouse model. Interestingly, we identified a linkage between poly-PR and RNA-binding protein fused in sarcoma (FUS), another ALS-related gene product associated with DNA repair. Poly-PR interacts with FUS both in vitro and in vivo, phase separates with FUS in a poly-PR concentration-dependent manner, and impairs the fluidity of FUS droplets in vitro and in cells. Moreover, poly-PR impedes the recruitment of FUS and its downstream protein XRCC1 to DNA damage foci after microirradiation. Importantly, overexpression of FUS significantly decreased the level of DNA damage and dramatically reduced poly-PR-induced cell death. Our data suggest the severe DNA damage caused by poly-PR and highlight the interconnection between poly-PR and FUS, enlightening the potential therapeutic role of FUS in alleviating poly-PR-induced cell toxicity.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Animais , Camundongos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Expansão das Repetições de DNA , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Proteínas/genética , Dano ao DNA/genética , Arginina/genética , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Dipeptídeos/genética
4.
Front Pharmacol ; 13: 942126, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204232

RESUMO

Accurate identification of molecular targets of disease plays an important role in diagnosis, prognosis, and therapies. Breast cancer (BC) is one of the most common malignant cancers in women worldwide. Thus, the objective of this study was to accurately identify a set of molecular targets and small molecular drugs that might be effective for BC diagnosis, prognosis, and therapies, by using existing bioinformatics and network-based approaches. Nine gene expression profiles (GSE54002, GSE29431, GSE124646, GSE42568, GSE45827, GSE10810, GSE65216, GSE36295, and GSE109169) collected from the Gene Expression Omnibus (GEO) database were used for bioinformatics analysis in this study. Two packages, LIMMA and clusterProfiler, in R were used to identify overlapping differential expressed genes (oDEGs) and significant GO and KEGG enrichment terms. We constructed a PPI (protein-protein interaction) network through the STRING database and identified eight key genes (KGs) EGFR, FN1, EZH2, MET, CDK1, AURKA, TOP2A, and BIRC5 by using six topological measures, betweenness, closeness, eccentricity, degree, MCC, and MNC, in the Analyze Network tool in Cytoscape. Three online databases GSCALite, Network Analyst, and GEPIA were used to analyze drug enrichment, regulatory interaction networks, and gene expression levels of KGs. We checked the prognostic power of KGs through the prediction model using the popular machine learning algorithm support vector machine (SVM). We suggested four TFs (TP63, MYC, SOX2, and KDM5B) and four miRNAs (hsa-mir-16-5p, hsa-mir-34a-5p, hsa-mir-1-3p, and hsa-mir-23b-3p) as key transcriptional and posttranscriptional regulators of KGs. Finally, we proposed 16 candidate repurposing drugs YM201636, masitinib, SB590885, GSK1070916, GSK2126458, ZSTK474, dasatinib, fedratinib, dabrafenib, methotrexate, trametinib, tubastatin A, BIX02189, CP466722, afatinib, and belinostat for BC through molecular docking analysis. Using BC cell lines, we validated that masitinib inhibits the mTOR signaling pathway and induces apoptotic cell death. Therefore, the proposed results might play an effective role in the treatment of BC patients.

5.
Cell Mol Life Sci ; 79(9): 501, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36036324

RESUMO

BACKGROUND: Poly-GA, a dipeptide repeat protein unconventionally translated from GGGGCC (G4C2) repeat expansions in C9orf72, is abundant in C9orf72-related amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9orf72-ALS/FTD). Although the poly-GA aggregates have been identified in C9orf72-ALS/FTD neurons, the effects on UPS (ubiquitin-proteasome system) and autophagy and their exact molecular mechanisms have not been fully elucidated. RESULTS: Herein, our in vivo experiments indicate that the mice expressing ploy-GA with 150 repeats instead of 30 repeats exhibit significant aggregates in cells. Mice expressing 150 repeats ploy-GA shows behavioral deficits and activates autophagy in the brain. In vitro findings suggest that the poly-GA aggregates influence proteasomal by directly binding proteasome subunit PSMD2. Subsequently, the poly-GA aggregates activate phosphorylation and ubiquitination of p62 to recruit autophagosomes. Ultimately, the poly-GA aggregates lead to compensatory activation of autophagy. In vivo studies further reveal that rapamycin (autophagy activator) treatment significantly improves the degenerative symptoms and alleviates neuronal injury in mice expressing 150 repeats poly-GA. Meanwhile, rapamycin administration to mice expressing 150 repeats poly-GA reduces neuroinflammation and aggregates in the brain. CONCLUSION: In summary, we elucidate the relationship between poly-GA in the proteasome and autophagy: when poly-GA forms complexes with the proteasome, it recruits autophagosomes and affects proteasome function. Our study provides support for further promoting the comprehension of the pathogenesis of C9orf72, which may bring a hint for the exploration of rapamycin for the treatment of ALS/FTD.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Animais , Autofagia , Proteína C9orf72 , Camundongos , Complexo de Endopeptidases do Proteassoma , Sirolimo
6.
Neurosci Bull ; 36(9): 1057-1070, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32860626

RESUMO

Since the discovery of the C9ORF72 gene in 2011, great advances have been achieved in its genetics and in identifying its role in disease models and pathological mechanisms; it is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). ALS patients with C9ORF72 expansion show heterogeneous symptoms. Those who are C9ORF72 expansion carriers have shorter survival after disease onset than non-C9ORF72 expansion patients. Pathological and clinical features of C9ORF72 patients have been well mimicked via several models, including induced pluripotent stem cell-derived neurons and transgenic mice that were embedded with bacterial artificial chromosome construct and that overexpressing dipeptide repeat proteins. The mechanisms implicated in C9ORF72 pathology include DNA damage, changes of RNA metabolism, alteration of phase separation, and impairment of nucleocytoplasmic transport, which may underlie C9ORF72 expansion-related ALS/FTD and provide insight into non-C9ORF72 expansion-related ALS, FTD, and other neurodegenerative diseases.


Assuntos
Esclerose Lateral Amiotrófica , Proteína C9orf72 , Demência Frontotemporal , Esclerose Lateral Amiotrófica/genética , Animais , Proteína C9orf72/genética , Expansão das Repetições de DNA , Demência Frontotemporal/genética , Humanos , Camundongos , Camundongos Transgênicos , Proteínas
7.
Adv Exp Med Biol ; 1207: 75-85, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32671739

RESUMO

Prion disease, also known as transmissible spongiform encephalopathy (TES), is a fatal neurodegenerative disease caused by prion protein. The most important pathogenesis is related to changes in the conformation of cellular prion proteins (PrPC). The histopathological features of prion disease are spongiform degeneration, neuronal deficiency, glial activation and the deposition of amyloid-like PrPSc. Cellular prion protein, ubiquitously expressed in the brain and other tissues, is transformed into the PrP (PrPSc) isoform in the prion disease. In this chapter, we summarize the research progresses of prion disease, the structural organization and normal function of PrPC in the central nervous system. Moreover, the formation and transmissibility of prion aggregations (PrPSc) were also included. But we mainly focused on the function of PrPSc in autophagy. Several autophagic-related markers, such as p62 and LC3, are significantly upregulated in models of prion disease. Recent advances in the autophagic invention in prion disease and several pharmaceutical targets of autophagy were reviewed in this chapter. It is necessary to understand how the prion protein spread, transport and recycle, and what is the relationship between the clearance and autophagy.


Assuntos
Autofagia , Doenças Priônicas , Humanos , Proteínas Priônicas
8.
Adv Exp Med Biol ; 1207: 149-161, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32671744

RESUMO

Polyglutamine (polyQ) disease is a type of fatal neurodegenerative disease caused by an expansion of CAG repeats in a specific gene, resulting in a protein with an abnormal polyQ fragment. The age of onset and the degree of pathological deterioration are related to the length of the polyQ fragment. At least 9 kinds of polyglutamine diseases have been discovered, including Huntington disease (HD), dentatorubral pallidoluysian atrophy (DRPLA), spinobulbar muscular atrophy (SBMA) and six spinocerebellar ataxia (SCA) such as SCA1, 2, 3, 6, 7 and 17 subtypes (Table 9.1). Previous studies suggest that autophagy plays a major role in the quality control of disease proteins in polyQ diseases. In this chapter, we majorly focused on three representative polyQ diseases, including spinocerebellar Ataxia type 3 (SCA3), spinocerebellar ataxia type 7 (SCA7) and Huntington's disease (HD). The relationship of the ubiquitin-proteasome system and autophagy involved in disease protein accumulation were summarized.


Assuntos
Autofagia , Atrofia Bulboespinal Ligada ao X , Doença de Huntington , Epilepsias Mioclônicas Progressivas , Peptídeos/metabolismo , Ataxias Espinocerebelares , Humanos
9.
Aging Cell ; 19(4): e13126, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32100453

RESUMO

GGGGCC repeat expansion in C9orf72 is the most common genetic cause in both frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), two neurodegenerative disorders in association with aging. Bidirectional repeat expansions in the noncoding region of C9orf72 have been shown to produce dipeptide repeat (DPR) proteins through repeat-associated non-ATG (RAN) translation and to reduce the expression level of the C9orf72 gene product, C9orf72 protein. Mechanisms underlying C9orf72-linked neurodegeneration include expanded RNA repeat gain of function, DPR toxicity, and C9orf72 protein loss of function. In the current study, we focus on the cellular function of C9orf72 protein. We report that C9orf72 can regulate lysosomal biogenesis and autophagy at the transcriptional level. We show that loss of C9orf72 leads to striking accumulation of lysosomes, autophagosomes, and autolysosomes in cells, which is associated with suppressed mTORC1 activity and enhanced nuclear translocation of MiT/TFE family members MITF, TFE3, and TFEB, three master regulators of lysosomal biogenesis and autophagy. We demonstrate that the DENN domain of C9orf72 specifically binds to inactive Rag GTPases, but not active Rag GTPases, thereby affecting the function of Rag/raptor/mTOR complex and mTORC1 activity. Furthermore, active Rag GTPases, but not inactive Rag GTPases or raptor rescued the impaired activity and lysosomal localization of mTORC1 in C9orf72-deficient cells. Taken together, the present study highlights a key role of C9orf72 in lysosomal and autophagosomal regulation, and demonstrates that Rag GTPases and mTORC1 are involved in C9orf72-mediated autophagy.


Assuntos
Proteína C9orf72/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Animais , Autofagossomos/metabolismo , Proteína C9orf72/genética , Células Cultivadas , Humanos , Camundongos
10.
J Cell Physiol ; 235(2): 869-879, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31232473

RESUMO

Lack of dopamine production and neurodegeneration of dopaminergic neurons in the substantia nigra are considered as the major characteristics of Parkinson's disease, a prevalent movement disorder worldwide. DJ-1 mutation leading to loss of its protein functions is a genetic factor of PD. In this study, our results illustrated that DJ-1 can directly interact with Ca2+ /calmodulin-dependent protein kinase kinase ß (CaMKKß) and modifies the cAMP-responsive element binding protein 1 (CREB1) activity, thus regulates tyrosine hydroxylase (TH) expression. In Dj-1 knockout mouse substantia nigra, the levels of TH and the phosphorylation of CREB1 Ser133 are significantly decreased. Moreover, Dj-1 deficiency suppresses the phosphorylation of CaMKIV (Thr196/200) and CREB1 (Ser133), subsequently inhibits TH expression in vitro. Furthermore, Knockdown of Creb1 abolishes the effects of DJ-1 on TH regulation. Our data reveal a novel pathway in which DJ-1 regulates CaMKKß/CaMKIV/CREB1 activities to facilitate TH expression.


Assuntos
Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Doença de Parkinson/patologia , Proteína Desglicase DJ-1/metabolismo , Tirosina 3-Mono-Oxigenase/biossíntese , Animais , Linhagem Celular Tumoral , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Knockout , Fosforilação , Transdução de Sinais , Substância Negra/patologia , Tirosina 3-Mono-Oxigenase/metabolismo
11.
Nat Commun ; 10(1): 2906, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31266945

RESUMO

A GGGGCC hexanucleotide repeat expansion in intron 1 of chromosome 9 open reading frame 72 (C9ORF72) gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. Repeat-associated non-ATG translation of dipeptide repeat proteins (DPRs) contributes to the neuropathological features of c9FTD/ALS. Among the five DPRs, arginine-rich poly-PR are reported to be the most toxic. Here, we generate a transgenic mouse line that expresses poly-PR (GFP-PR28) specifically in neurons. GFP-PR28 homozygous mice show decreased survival time, while the heterozygous mice show motor imbalance, decreased brain weight, loss of Purkinje cells and lower motor neurons, and inflammation in the cerebellum and spinal cord. Transcriptional analysis shows that in the cerebellum, GFP-PR28 heterozygous mice show differential expression of genes related to synaptic transmission. Our findings show that GFP-PR28 transgenic mice partly model neuropathological features of c9FTD/ALS, and show a role for poly-PR in neurodegeneration.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Proteína C9orf72/genética , Dipeptídeos/genética , Modelos Animais de Doenças , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Proteína C9orf72/metabolismo , Dipeptídeos/metabolismo , Dipeptídeos/toxicidade , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora
12.
Neurosci Bull ; 35(5): 889-900, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31148094

RESUMO

GGGGCC repeat expansions in the C9ORF72 gene are the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (c9ALS/FTD). It has been reported that hexanucleotide repeat expansions in C9ORF72 produce five dipeptide repeat (DPR) proteins by an unconventional repeat-associated non-ATG (RAN) translation. Within the five DPR proteins, poly-PR and poly-GR that contain arginine are more toxic than the other DPRs (poly-GA, poly-GP, and poly-PA). Here, we demonstrated that poly-PR peptides transferred into cells by endocytosis in a clathrin-dependent manner, leading to endoplasmic reticulum stress and cell death. In SH-SY5Y cells and primary cortical neurons, poly-PR activated JUN amino-terminal kinase (JNK) and increased the levels of p53 and Bax. The uptake of poly-PR peptides by cells was significantly inhibited by knockdown of clathrin or by chlorpromazine, an inhibitor that blocks clathrin-mediated endocytosis. Inhibition of clathrin-dependent endocytosis by chlorpromazine significantly blocked the transfer of poly-PR peptides into cells, and attenuated poly-PR-induced JNK activation and cell death. Our data revealed that the uptake of poly-PR undergoes clathrin-dependent endocytosis and blockade of this process prevents the toxic effects of synthetic poly-PR peptides.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Clatrina/deficiência , Dipeptídeos/metabolismo , Endocitose/fisiologia , Demência Frontotemporal/metabolismo , Esclerose Lateral Amiotrófica/genética , Proteína C9orf72 , Linhagem Celular Tumoral , Clatrina/genética , Dipeptídeos/genética , Estresse do Retículo Endoplasmático/fisiologia , Demência Frontotemporal/genética , Técnicas de Silenciamento de Genes/métodos , Humanos
13.
Acta Pharmacol Sin ; 40(1): 26-34, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29950615

RESUMO

REV-ERBα, the NR1D1 (nuclear receptor subfamily 1, group D, member 1) gene product, is a dominant transcriptional silencer that represses the expression of genes involved in numerous physiological functions, including circadian rhythm, inflammation, and metabolism, and plays a crucial role in maintaining immune functions. Microglia-mediated neuroinflammation is tightly associated with various neurodegenerative diseases and psychiatric disorders. However, the role of REV-ERBα in neuroinflammation is largely unclear. In this study, we investigated whether and how pharmacological activation of REV-ERBα affected lipopolysaccharide (LPS)-induced neuroinflammation in mouse microglia in vitro and in vivo. In BV2 cells or primary mouse cultured microglia, application of REV-ERBα agonist GSK4112 or SR9011 dose-dependently suppressed LPS-induced microglial activation through the nuclear factor kappa B (NF-κB) pathway. In BV2 cells, pretreatment with GSK4112 inhibited LPS-induced phosphorylation of the inhibitor of NF-κB alpha (IκBα) kinase (IκK), thus restraining the phosphorylation and degradation of IκBα, and blocked the nuclear translocation of p65, a NF-κB subunit, thereby suppressing the expression and secretion of the proinflammatory cytokines, such as interleukin 6 (IL-6) and tumor necrosis factor α (TNFα). Moreover, REV-ERBα agonist-induced inhibition on neuroinflammation protected neurons from microglial activation-induced damage, which were also demonstrated in mice with their ventral midbrain microinjected with GSK4112, and then stimulated with LPS. Our results reveal that enhanced REV-ERBα activity suppresses microglial activation through the NF-κB pathway in the central nervous system.


Assuntos
Glicina/análogos & derivados , Microglia/efeitos dos fármacos , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/agonistas , Pirrolidinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Tiofenos/uso terapêutico , Fator de Transcrição RelA/metabolismo , Animais , Linhagem Celular Tumoral , Glicina/farmacologia , Glicina/uso terapêutico , Células HEK293 , Humanos , Inflamação/tratamento farmacológico , Masculino , Mesencéfalo/fisiopatologia , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Pirrolidinas/farmacologia , Tiofenos/farmacologia
14.
Neurosci Bull ; 34(6): 1037-1046, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30143980

RESUMO

Autophagy is an evolutionarily-conserved self-degradative process that maintains cellular homeostasis by eliminating protein aggregates and damaged organelles. Recently, vesicle-associated membrane protein-associated protein B (VAPB), which is associated with the familial form of amyotrophic lateral sclerosis, has been shown to regulate autophagy. In the present study, we demonstrated that knockdown of VAPB induced the up-regulation of beclin 1 expression, which promoted LC3 (microtubule-associated protein light chain 3) conversion and the formation of LC3 puncta, whereas overexpression of VAPB inhibited these processes. The regulation of beclin 1 by VAPB was at the transcriptional level. Moreover, knockdown of VAPB increased autophagic flux, which promoted the degradation of the autophagy substrate p62 and neurodegenerative disease proteins. Our study provides evidence that the regulation of autophagy by VAPB is associated with the autophagy-initiating factor beclin 1.


Assuntos
Autofagia/fisiologia , Proteína Beclina-1/metabolismo , Regulação da Expressão Gênica/genética , Proteínas R-SNARE/metabolismo , Autofagia/efeitos dos fármacos , Proteína Beclina-1/genética , Linhagem Celular Transformada , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas R-SNARE/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transfecção
15.
J Biol Chem ; 293(14): 5090-5101, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29449373

RESUMO

Abelson helper integration site 1 (AHI1) is associated with several neuropsychiatric and brain developmental disorders, such as schizophrenia, depression, autism, and Joubert syndrome. Ahi1 deficiency in mice leads to behaviors typical of depression. However, the mechanisms by which AHI1 regulates behavior remain to be elucidated. Here, we found that down-regulation of expression of the rate-limiting enzyme in dopamine biosynthesis, tyrosine hydroxylase (TH), in the midbrains of Ahi1-knockout (KO) mice is responsible for Ahi1-deficiency-mediated depressive symptoms. We also found that Rev-Erbα, a TH transcriptional repressor and circadian regulator, is up-regulated in the Ahi1-KO mouse midbrains and Ahi1-knockdown Neuro-2a cells. Moreover, brain and muscle Arnt-like protein 1 (BMAL1), the Rev-Erbα transcriptional regulator, is also increased in the Ahi1-KO mouse midbrains and Ahi1-knockdown cells. Our results further revealed that AHI1 decreases BMAL1/Rev-Erbα expression by interacting with and repressing retinoic acid receptor-related orphan receptor α, a nuclear receptor and transcriptional regulator of circadian genes. Of note, Bmal1 deficiency reversed the reduction in TH expression induced by Ahi1 deficiency. Moreover, microinfusion of the Rev-Erbα inhibitor SR8278 into the ventral midbrain of Ahi1-KO mice significantly increased TH expression in the ventral tegmental area and improved their depressive symptoms. These findings provide a mechanistic explanation for a link between AHI1-related behaviors and the circadian clock pathway, indicating an involvement of circadian regulatory proteins in AHI1-regulated mood and behavior.


Assuntos
Relógios Circadianos , Depressão/genética , Regulação para Baixo , Proteínas Proto-Oncogênicas/genética , Transdução de Sinais , Tirosina 3-Mono-Oxigenase/genética , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Proteínas Adaptadoras de Transporte Vesicular , Afeto , Animais , Depressão/metabolismo , Deleção de Genes , Mesencéfalo/fisiologia , Camundongos , Camundongos Knockout , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
16.
Hum Mol Genet ; 27(4): 667-678, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29272390

RESUMO

Formation of protein aggregates is the hallmark of neurodegenerative diseases such as Alzheimer's disease, Huntington's disease, and frontotemporal dementia. Many ubiquitin-associated proteins are recruited to protein aggregates, such as sequestosome 1/p62 (p62), parkin, and cereblon (CRBN). However, the roles of these proteins in the regulation of the formation of protein aggregates are not well understood. Here, using cell and animal models, we discover that CRBN directly interacts with p62 and inhibits the formation of protein aggregates induced by mutant huntingtin (Htt-polyQ) and TAR DNA-binding protein 43 (TDP43C) in a p62-dependent manner. Furthermore, we find the suppression of the formation of protein aggregates by CRBN is caused by the decrease of the binding affinity of p62 to ubiquitinated proteins but not by the change of p62 protein level. Our study reveals a novel role of CRBN and the underlying molecular mechanism in the regulation of misfolded proteins in neurodegenerative diseases, which may provide new insights for finding pharmacological targets for these diseases.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Neurônios/metabolismo , Peptídeo Hidrolases/metabolismo , Agregados Proteicos/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Astrócitos/metabolismo , Células Cultivadas , Proteínas de Ligação a DNA/genética , Células HEK293 , Humanos , Immunoblotting , Imunoprecipitação , Camundongos , Camundongos Knockout , Doenças Neurodegenerativas , Peptídeo Hidrolases/genética , Proteína Sequestossoma-1 , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases
17.
Autophagy ; 12(4): 707-8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27050460

RESUMO

In a recent paper we addressed the mechanism by which defective autophagy contributes to TARDBP/TDP-43-mediated neurodegenerative disorders. We demonstrated that TARDBP regulates MTORC1-TFEB signaling by targeting RPTOR/raptor, a key component and an adaptor protein of MTORC1. Loss of TARDBP decreased the mRNA stability of RPTOR and this regulation in turn enhanced autophagosomal and lysosomal biogenesis in an MTORC1-dependent manner. Meanwhile, loss of TARDBP could also impair autophagosome-lysosome fusion in an MTORC1-independent manner. Importantly, we found that modulation of MTOR activity by treatment with rapamycin and phosphatidic acid had strong effects on the neurodegenerative phenotypes of TBPH (Drosophila TARDBP)-depleted flies. Taken together, our data reveal that multiple dysfunctions in the autophagic process contribute to TARDBP-linked neurodegeneration and may help to identify potential therapeutic targets in the future.


Assuntos
Autofagia , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Humanos , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Fagossomos/metabolismo , Transdução de Sinais
18.
EMBO J ; 35(2): 121-42, 2016 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-26702100

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that is characterized by selective loss of motor neurons in brain and spinal cord. TAR DNA-binding protein 43 (TDP-43) was identified as a major component of disease pathogenesis in ALS, frontotemporal lobar degeneration (FTLD), and other neurodegenerative disease. Despite the fact that TDP-43 is a multi-functional protein involved in RNA processing and a large number of TDP-43 RNA targets have been discovered, the initial toxic effect and the pathogenic mechanism underlying TDP-43-linked neurodegeneration remain elusive. In this study, we found that loss of TDP-43 strongly induced a nuclear translocation of TFEB, the master regulator of lysosomal biogenesis and autophagy, through targeting the mTORC1 key component raptor. This regulation in turn enhanced global gene expressions in the autophagy-lysosome pathway (ALP) and increased autophagosomal and lysosomal biogenesis. However, loss of TDP-43 also impaired the fusion of autophagosomes with lysosomes through dynactin 1 downregulation, leading to accumulation of immature autophagic vesicles and overwhelmed ALP function. Importantly, inhibition of mTORC1 signaling by rapamycin treatment aggravated the neurodegenerative phenotype in a TDP-43-depleted Drosophila model, whereas activation of mTORC1 signaling by PA treatment ameliorated the neurodegenerative phenotype. Taken together, our data indicate that impaired mTORC1 signaling and influenced ALP may contribute to TDP-43-mediated neurodegeneration.


Assuntos
Autofagia/fisiologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Lisossomos/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Linhagem Celular , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Drosophila , Degeneração Lobar Frontotemporal/metabolismo , Células HEK293 , Células HeLa , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Modelos Biológicos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Ratos , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...