Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood ; 143(24): 2490-2503, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38493481

RESUMO

ABSTRACT: Pegylated interferon alfa (pegIFN-α) can induce molecular remissions in patients with JAK2-V617F-positive myeloproliferative neoplasms (MPNs) by targeting long-term hematopoietic stem cells (LT-HSCs). Additional somatic mutations in genes regulating LT-HSC self-renewal, such as DNMT3A, have been reported to have poorer responses to pegIFN-α. We investigated whether DNMT3A loss leads to alterations in JAK2-V617F LT-HSC functions conferring resistance to pegIFN-α treatment in a mouse model of MPN and in hematopoietic progenitors from patients with MPN. Long-term treatment with pegIFN-α normalized blood parameters and reduced splenomegaly and JAK2-V617F chimerism in single-mutant JAK2-V617F (VF) mice. However, pegIFN-α in VF;Dnmt3aΔ/Δ (VF;DmΔ/Δ) mice worsened splenomegaly and failed to reduce JAK2-V617F chimerism. Furthermore, LT-HSCs from VF;DmΔ/Δ mice compared with VF were less prone to accumulate DNA damage and exit dormancy upon pegIFN-α treatment. RNA sequencing showed that IFN-α induced stronger upregulation of inflammatory pathways in LT-HSCs from VF;DmΔ/Δ than from VF mice, indicating that the resistance of VF;DmΔ/Δ LT-HSC was not due to failure in IFN-α signaling. Transplantations of bone marrow from pegIFN-α-treated VF;DmΔ/Δ mice gave rise to more aggressive disease in secondary and tertiary recipients. Liquid cultures of hematopoietic progenitors from patients with MPN with JAK2-V617F and DNMT3A mutation showed increased percentages of JAK2-V617F-positive colonies upon IFN-α exposure, whereas in patients with JAK2-V617F alone, the percentages of JAK2-V617F-positive colonies decreased or remained unchanged. PegIFN-α combined with 5-azacytidine only partially overcame resistance in VF;DmΔ/Δ mice. However, this combination strongly decreased the JAK2-mutant allele burden in mice carrying VF mutation only, showing potential to inflict substantial damage preferentially to the JAK2-mutant clone.


Assuntos
DNA (Citosina-5-)-Metiltransferases , DNA Metiltransferase 3A , Resistencia a Medicamentos Antineoplásicos , Células-Tronco Hematopoéticas , Interferon-alfa , Janus Quinase 2 , Transtornos Mieloproliferativos , Animais , DNA Metiltransferase 3A/genética , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Interferon-alfa/farmacologia , Camundongos , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/metabolismo , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Autorrenovação Celular , Camundongos Endogâmicos C57BL , Polietilenoglicóis/farmacologia , Proteínas Recombinantes
2.
Blood Adv ; 8(9): 2312-2325, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38295283

RESUMO

ABSTRACT: Hyperproliferation of myeloid and erythroid cells in myeloproliferative neoplasms (MPN) driven by the JAK2-V617F mutation is associated with altered metabolism. Given the central role of glutamine in anabolic and catabolic pathways, we examined the effects of pharmacologically inhibiting glutaminolysis, that is, the conversion of glutamine (Gln) to glutamate (Glu), using CB-839, a small molecular inhibitor of the enzyme glutaminase (GLS). We show that CB-839 strongly reduced the mitochondrial respiration rate of bone marrow cells from JAK2-V617F mutant (VF) mice, demonstrating a marked dependence of these cells on Gln-derived ATP production. Consistently, in vivo treatment with CB-839 normalized blood glucose levels, reduced splenomegaly and decreased erythrocytosis in VF mice. These effects were more pronounced when CB-839 was combined with the JAK1/2 inhibitor ruxolitinib or the glycolysis inhibitor 3PO, indicating possible synergies when cotargeting different metabolic and oncogenic pathways. Furthermore, we show that the inhibition of glutaminolysis with CB-839 preferentially lowered the proportion of JAK2-mutant hematopoietic stem cells (HSCs). The total number of HSCs was decreased by CB-839, primarily by reducing HSCs in the G1 phase of the cell cycle. CB-839 in combination with ruxolitinib also strongly reduced myelofibrosis at later stages of MPN. In line with the effects shown in mice, proliferation of CD34+ hematopoietic stem and progenitor cells from polycythemia vera patients was inhibited by CB-839 at nanomolar concentrations. These data suggest that inhibiting GLS alone or in combination with inhibitors of glycolysis or JAK2 inhibitors represents an attractive new therapeutic approach to MPN.


Assuntos
Benzenoacetamidas , Glutaminase , Hematopoese , Janus Quinase 2 , Transtornos Mieloproliferativos , Animais , Camundongos , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/metabolismo , Janus Quinase 2/metabolismo , Janus Quinase 2/antagonistas & inibidores , Hematopoese/efeitos dos fármacos , Humanos , Glutaminase/antagonistas & inibidores , Glutaminase/metabolismo , Benzenoacetamidas/farmacologia , Benzenoacetamidas/uso terapêutico , Mutação , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico
3.
Blood Adv ; 8(5): 1234-1249, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38207211

RESUMO

ABSTRACT: JAK 2-V617F is the most frequent somatic mutation causing myeloproliferative neoplasm (MPN). JAK2-V617F can be found in healthy individuals with clonal hematopoiesis of indeterminate potential (CHIP) with a frequency much higher than the prevalence of MPNs. The factors controlling the conversion of JAK2-V617F CHIP to MPN are largely unknown. We hypothesized that interleukin-1ß (IL-1ß)-mediated inflammation can favor this progression. We established an experimental system using bone marrow (BM) transplantations from JAK2-V617F and GFP transgenic (VF;GFP) mice that were further crossed with IL-1ß-/- or IL-1R1-/- mice. To study the role of IL-1ß and its receptor on monoclonal evolution of MPN, we performed competitive BM transplantations at high dilutions with only 1 to 3 hematopoietic stem cells (HSCs) per recipient. Loss of IL-1ß in JAK2-mutant HSCs reduced engraftment, restricted clonal expansion, lowered the total numbers of functional HSCs, and decreased the rate of conversion to MPN. Loss of IL-1R1 in the recipients also lowered the conversion to MPN but did not reduce the frequency of engraftment of JAK2-mutant HSCs. Wild-type (WT) recipients transplanted with VF;GFP BM that developed MPNs had elevated IL-1ß levels and reduced frequencies of mesenchymal stromal cells (MSCs). Interestingly, frequencies of MSCs were also reduced in recipients that did not develop MPNs, had only marginally elevated IL-1ß levels, and displayed low GFP-chimerism resembling CHIP. Anti-IL-1ß antibody preserved high frequencies of MSCs in VF;GFP recipients and reduced the rate of engraftment and the conversion to MPN. Our results identify IL-1ß as a potential therapeutic target for preventing the transition from JAK2-V617F CHIP to MPNs.


Assuntos
Transtornos Mieloproliferativos , Animais , Camundongos , Animais Geneticamente Modificados , Transplante de Medula Óssea , Células-Tronco Hematopoéticas , Interleucina-1beta , Transtornos Mieloproliferativos/genética
4.
Hemasphere ; 7(5): e885, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37153874

RESUMO

Myeloproliferative neoplasms (MPNs) are caused by a somatic gain-of-function mutation in 1 of the 3 disease driver genes JAK2, MPL, or CALR. About half of the MPNs patients also carry additional somatic mutations that modify the clinical course. The order of acquisition of these gene mutations has been proposed to influence the phenotype and evolution of the disease. We studied 50 JAK2-V617F-positive MPN patients who carried at least 1 additional somatic mutation and determined the clonal architecture of their hematopoiesis by sequencing DNA from single-cell-derived colonies. In 22 of these patients, the same blood samples were also studied for comparison by Tapestri single-cell DNA sequencing (scDNAseq). The clonal architectures derived by the 2 methods showed good overall concordance. scDNAseq showed higher sensitivity for mutations with low variant allele fraction, but had more difficulties distinguishing between heterozygous and homozygous mutations. By unsupervised analysis of clonal architecture data from all 50 MPN patients, we defined 4 distinct clusters. Cluster 4, characterized by more complex subclonal structure correlated with reduced overall survival, independent of the MPN subtype, presence of high molecular risk mutations, or the age at diagnosis. Cluster 1 was characterized by additional mutations residing in clones separated from the JAK2-V617F clone. The correlation with overall survival improved when mutation in such separated clones were not counted. Our results show that scDNAseq can reliably decipher the clonal architecture and can be used to refine the molecular prognostic stratification that until now was primarily based on the clinical and laboratory parameters.

5.
Blood ; 141(17): 2127-2140, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36758212

RESUMO

JAK 2-V617F mutation causes myeloproliferative neoplasms (MPNs) that can manifest as polycythemia vera (PV), essential thrombocythemia (ET), or primary myelofibrosis. At diagnosis, patients with PV already exhibited iron deficiency, whereas patients with ET had normal iron stores. We examined the influence of iron availability on MPN phenotype in mice expressing JAK2-V617F and in mice expressing JAK2 with an N542-E543del mutation in exon 12 (E12). At baseline, on a control diet, all JAK2-mutant mouse models with a PV-like phenotype displayed iron deficiency, although E12 mice maintained more iron for augmented erythropoiesis than JAK2-V617F mutant mice. In contrast, JAK2-V617F mutant mice with an ET-like phenotype had normal iron stores comparable with that of wild-type (WT) mice. On a low-iron diet, JAK2-mutant mice and WT controls increased platelet production at the expense of erythrocytes. Mice with a PV phenotype responded to parenteral iron injections by decreasing platelet counts and further increasing hemoglobin and hematocrit, whereas no changes were observed in WT controls. Alterations of iron availability primarily affected the premegakaryocyte-erythrocyte progenitors, which constitute the iron-responsive stage of hematopoiesis in JAK2-mutant mice. The orally administered ferroportin inhibitor vamifeport and the minihepcidin PR73 normalized hematocrit and hemoglobin levels in JAK2-V617F and E12 mutant mouse models of PV, suggesting that ferroportin inhibitors and minihepcidins could be used in the treatment for patients with PV.


Assuntos
Deficiências de Ferro , Transtornos Mieloproliferativos , Policitemia Vera , Trombocitemia Essencial , Camundongos , Animais , Ferro , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/diagnóstico , Policitemia Vera/genética , Janus Quinase 2/genética , Trombocitemia Essencial/genética , Mutação , Fenótipo , Hemoglobinas/genética
6.
Nat Commun ; 13(1): 5346, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36100613

RESUMO

Interleukin-1ß (IL-1ß) is a master regulator of inflammation. Increased activity of IL-1ß has been implicated in various pathological conditions including myeloproliferative neoplasms (MPNs). Here we show that IL-1ß serum levels and expression of IL-1 receptors on hematopoietic progenitors and stem cells correlate with JAK2-V617F mutant allele fraction in peripheral blood of patients with MPN. We show that the source of IL-1ß overproduction in a mouse model of MPN are JAK2-V617F expressing hematopoietic cells. Knockout of IL-1ß in hematopoietic cells of JAK2-V617F mice reduces inflammatory cytokines, prevents damage to nestin-positive niche cells and reduces megakaryopoiesis, resulting in decrease of myelofibrosis and osteosclerosis. Inhibition of IL-1ß in JAK2-V617F mutant mice by anti-IL-1ß antibody also reduces myelofibrosis and osteosclerosis and shows additive effects with ruxolitinib. These results suggest that inhibition of IL-1ß with anti-IL-1ß antibody alone or in combination with ruxolitinib could have beneficial effects on the clinical course in patients with myelofibrosis.


Assuntos
Interleucina-1beta/metabolismo , Janus Quinase 2/genética , Transtornos Mieloproliferativos , Neoplasias , Osteosclerose , Mielofibrose Primária , Animais , Janus Quinase 2/metabolismo , Camundongos , Camundongos Knockout , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Nitrilas , Osteosclerose/genética , Mielofibrose Primária/tratamento farmacológico , Mielofibrose Primária/genética , Pirazóis , Pirimidinas
7.
Blood ; 137(16): 2139-2151, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33667305

RESUMO

We studied a subset of hematopoietic stem cells (HSCs) that are defined by elevated expression of CD41 (CD41hi) and showed bias for differentiation toward megakaryocytes (Mks). Mouse models of myeloproliferative neoplasms (MPNs) expressing JAK2-V617F (VF) displayed increased frequencies and percentages of the CD41hi vs CD41lo HSCs compared with wild-type controls. An increase in CD41hi HSCs that correlated with JAK2-V617F mutant allele burden was also found in bone marrow from patients with MPN. CD41hi HSCs produced a higher number of Mk-colonies of HSCs in single-cell cultures in vitro, but showed reduced long-term reconstitution potential compared with CD41lo HSCs in competitive transplantations in vivo. RNA expression profiling showed an upregulated cell cycle, Myc, and oxidative phosphorylation gene signatures in CD41hi HSCs, whereas CD41lo HSCs showed higher gene expression of interferon and the JAK/STAT and TNFα/NFκB signaling pathways. Higher cell cycle activity and elevated levels of reactive oxygen species were confirmed in CD41hi HSCs by flow cytometry. Expression of Epcr, a marker for quiescent HSCs inversely correlated with expression of CD41 in mice, but did not show such reciprocal expression pattern in patients with MPN. Treatment with interferon-α further increased the frequency and percentage of CD41hi HSCs and reduced the number of JAK2-V617F+ HSCs in mice and patients with MPN. The shift toward the CD41hi subset of HSCs by interferon-α provides a possible mechanism of how interferon-α preferentially targets the JAK2 mutant clone.


Assuntos
Interferon-alfa/uso terapêutico , Janus Quinase 2/genética , Megacariócitos/metabolismo , Transtornos Mieloproliferativos/genética , Animais , Técnicas de Introdução de Genes , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Megacariócitos/citologia , Camundongos , Camundongos Transgênicos , Transtornos Mieloproliferativos/tratamento farmacológico , Glicoproteína IIb da Membrana de Plaquetas/genética , Mutação Puntual/efeitos dos fármacos
8.
Blood ; 134(21): 1832-1846, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31511238

RESUMO

Increased energy requirement and metabolic reprogramming are hallmarks of cancer cells. We show that metabolic alterations in hematopoietic cells are fundamental to the pathogenesis of mutant JAK2-driven myeloproliferative neoplasms (MPNs). We found that expression of mutant JAK2 augmented and subverted metabolic activity of MPN cells, resulting in systemic metabolic changes in vivo, including hypoglycemia, adipose tissue atrophy, and early mortality. Hypoglycemia in MPN mouse models correlated with hyperactive erythropoiesis and was due to a combination of elevated glycolysis and increased oxidative phosphorylation. Modulating nutrient supply through high-fat diet improved survival, whereas high-glucose diet augmented the MPN phenotype. Transcriptomic and metabolomic analyses identified numerous metabolic nodes in JAK2-mutant hematopoietic stem and progenitor cells that were altered in comparison with wild-type controls. We studied the consequences of elevated levels of Pfkfb3, a key regulatory enzyme of glycolysis, and found that pharmacological inhibition of Pfkfb3 with the small molecule 3PO reversed hypoglycemia and reduced hematopoietic manifestations of MPNs. These effects were additive with the JAK1/2 inhibitor ruxolitinib in vivo and in vitro. Inhibition of glycolysis by 3PO altered the redox homeostasis, leading to accumulation of reactive oxygen species and augmented apoptosis rate. Our findings reveal the contribution of metabolic alterations to the pathogenesis of MPNs and suggest that metabolic dependencies of mutant cells represent vulnerabilities that can be targeted for treating MPNs.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Janus Quinase 2/genética , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Animais , Humanos , Camundongos , Mutação
9.
J Clin Invest ; 129(4): 1596-1611, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30730307

RESUMO

Constitutive JAK2 signaling is central to myeloproliferative neoplasm (MPN) pathogenesis and results in activation of STAT, PI3K/AKT, and MEK/ERK signaling. However, the therapeutic efficacy of current JAK2 inhibitors is limited. We investigated the role of MEK/ERK signaling in MPN cell survival in the setting of JAK inhibition. Type I and II JAK2 inhibition suppressed MEK/ERK activation in MPN cell lines in vitro, but not in Jak2V617F and MPLW515L mouse models in vivo. JAK2 inhibition ex vivo inhibited MEK/ERK signaling, suggesting that cell-extrinsic factors maintain ERK activation in vivo. We identified PDGFRα as an activated kinase that remains activated upon JAK2 inhibition in vivo, and PDGF-AA/PDGF-BB production persisted in the setting of JAK inhibition. PDGF-BB maintained ERK activation in the presence of ruxolitinib, consistent with its function as a ligand-induced bypass for ERK activation. Combined JAK/MEK inhibition suppressed MEK/ERK activation in Jak2V617F and MPLW515L mice with increased efficacy and reversal of fibrosis to an extent not seen with JAK inhibitors. This demonstrates that compensatory ERK activation limits the efficacy of JAK2 inhibition and dual JAK/MEK inhibition provides an opportunity for improved therapeutic efficacy in MPNs and in other malignancies driven by aberrant JAK-STAT signaling.


Assuntos
Neoplasias Hematológicas/tratamento farmacológico , Janus Quinase 2/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Mutação de Sentido Incorreto , Transtornos Mieloproliferativos/tratamento farmacológico , Proteínas de Neoplasias/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Substituição de Aminoácidos , Animais , Becaplermina/genética , Becaplermina/metabolismo , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Neoplasias Hematológicas/enzimologia , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patologia , Humanos , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Transtornos Mieloproliferativos/enzimologia , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fator de Crescimento Derivado de Plaquetas/genética , Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores de Trombopoetina/genética , Receptores de Trombopoetina/metabolismo
10.
J Exp Med ; 213(8): 1479-96, 2016 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-27401344

RESUMO

Myeloproliferative neoplasm (MPN) patients frequently show co-occurrence of JAK2-V617F and mutations in epigenetic regulator genes, including EZH2 In this study, we show that JAK2-V617F and loss of Ezh2 in hematopoietic cells contribute synergistically to the development of MPN. The MPN phenotype induced by JAK2-V617F was accentuated in JAK2-V617F;Ezh2(-/-) mice, resulting in very high platelet and neutrophil counts, more advanced myelofibrosis, and reduced survival. These mice also displayed expansion of the stem cell and progenitor cell compartments and a shift of differentiation toward megakaryopoiesis at the expense of erythropoiesis. Single cell limiting dilution transplantation with bone marrow from JAK2-V617F;Ezh2(+/-) mice showed increased reconstitution and MPN disease initiation potential compared with JAK2-V617F alone. RNA sequencing in Ezh2-deficient hematopoietic stem cells (HSCs) and megakaryocytic erythroid progenitors identified highly up-regulated genes, including Lin28b and Hmga2, and chromatin immunoprecipitation (ChIP)-quantitative PCR (qPCR) analysis of their promoters revealed decreased H3K27me3 deposition. Forced expression of Hmga2 resulted in increased chimerism and platelet counts in recipients of retrovirally transduced HSCs. JAK2-V617F-expressing mice treated with an Ezh2 inhibitor showed higher platelet counts than vehicle controls. Our data support the proposed tumor suppressor function of EZH2 in patients with MPN and call for caution when considering using Ezh2 inhibitors in MPN.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/deficiência , Neoplasias Hematológicas , Janus Quinase 2 , Mutação de Sentido Incorreto , Transtornos Mieloproliferativos , Proteínas Supressoras de Tumor/deficiência , Substituição de Aminoácidos , Animais , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patologia , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Camundongos , Camundongos Mutantes , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Transtornos Mieloproliferativos/patologia
11.
Blood ; 128(6): 839-51, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-27288519

RESUMO

Mutations in JAK2 exon 12 are frequently found in patients with polycythemia vera (PV) that do not carry a JAK2-V617F mutation. The majority of these patients display isolated erythrocytosis. We generated a mouse model that expresses JAK2-N542-E543del, the most frequent JAK2 exon 12 mutation found in PV patients. Mice expressing the human JAK2-N542-E543del (Ex12) showed a strong increase in red blood cell parameters but normal neutrophil and platelet counts, and reduced overall survival. Erythropoiesis was increased in the bone marrow and spleen, with normal megakaryopoiesis and absence of myelofibrosis in histopathology. Erythroid progenitors and precursors were increased in hematopoietic tissues, but the numbers of megakaryocytic precursors were unchanged. Phosphorylation Stat3 and Erk1/2 proteins were increased, and a trend toward increased phospho-Stat5 and phospho-Stat1 was noted. However, Stat1 knock out in Ex12 mice induced no changes in platelet or red cell parameters, indicating that Stat1 does not play a central role in mediating the effects of Ex12 signaling on megakaryopoiesis or erythropoiesis. Ex12 mice showed decreased expression of hepcidin and increased expression of transferrin receptor-1 and erythroferrone, suggesting that the strong erythroid phenotype in Ex12 mutant mice is favored by changes in iron metabolism that optimize iron availability to allow maximal production of red cells.


Assuntos
Eritropoese , Janus Quinase 2/genética , Mutação , Policitemia/genética , Animais , Sequência de Bases , Eritrócitos/patologia , Éxons , Ferro/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Policitemia/metabolismo , Policitemia/fisiopatologia
12.
Blood ; 125(13): 2131-40, 2015 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-25595737

RESUMO

The acquired somatic JAK2-V617F mutation is present in >80% of patients with myeloproliferative neoplasms (MPNs). Stat3 plays a role in hematopoietic homeostasis and might influence the JAK2-V617F-driven MPN phenotype. We crossed our transgenic SclCre;V617F mice with a conditional Stat3 knockout strain and performed bone marrow transplantations into lethally irradiated recipient mice. The deletion of Stat3 increased the platelet numbers in SclCre;V617F;Stat3(fl/fl) mice compared with SclCre;V617F;Stat3(fl/+) or SclCre;V617F;Stat3(+/+) mice. Stat3 deletion also normalized JAK2-V617F-induced neutrophilia. Megakaryocyte progenitors were elevated, especially in the spleen, and a slight increase in myelofibrosis was noted. We observed increased mRNA expression levels of Stat1 and Stat1 target genes and augmented phosphorylation of Stat1 protein in bone marrow and spleen of JAK2-V617F mice after Stat3 deletion. The survival of Stat3-deficient mice expressing JAK2-V617F was reduced. Inflammatory bowel disease, previously associated with shortened survival of Stat3-deficient mice, was less prominent in the bone marrow transplantation setting, possibly by limiting deletion of Stat3 to hematopoietic tissues only. In conclusion, deletion of Stat3 in hematopoietic cells from JAK2-V617F mice did not ameliorate the course of MPN, but rather enhanced thrombocytosis and shortened the overall survival.


Assuntos
Neoplasias da Medula Óssea/mortalidade , Células-Tronco Hematopoéticas/metabolismo , Janus Quinase 2/genética , Transtornos Mieloproliferativos/mortalidade , Fator de Transcrição STAT3/genética , Trombocitose/genética , Substituição de Aminoácidos , Animais , Medula Óssea/metabolismo , Neoplasias da Medula Óssea/genética , Neoplasias da Medula Óssea/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Deleção de Genes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Fenilalanina/genética , Fator de Transcrição STAT3/metabolismo , Valina/genética
13.
J Exp Med ; 211(11): 2213-30, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25288396

RESUMO

The majority of patients with myeloproliferative neoplasms (MPNs) carry a somatic JAK2-V617F mutation. Because additional mutations can precede JAK2-V617F, it is questioned whether JAK2-V617F alone can initiate MPN. Several mouse models have demonstrated that JAK2-V617F can cause MPN; however, in all these models disease was polyclonal. Conversely, cancer initiates at the single cell level, but attempts to recapitulate single-cell disease initiation in mice have thus far failed. We demonstrate by limiting dilution and single-cell transplantations that MPN disease, manifesting either as erythrocytosis or thrombocytosis, can be initiated clonally from a single cell carrying JAK2-V617F. However, only a subset of mice reconstituted from single hematopoietic stem cells (HSCs) displayed MPN phenotype. Expression of JAK2-V617F in HSCs promoted cell division and increased DNA damage. Higher JAK2-V617F expression correlated with a short-term HSC signature and increased myeloid bias in single-cell gene expression analyses. Lower JAK2-V617F expression in progenitor and stem cells was associated with the capacity to stably engraft in secondary recipients. Furthermore, long-term repopulating capacity was also present in a compartment with intermediate expression levels of lineage markers. Our studies demonstrate that MPN can be initiated from a single HSC and illustrate that JAK2-V617F has complex effects on HSC biology.


Assuntos
Transformação Celular Neoplásica/genética , Células-Tronco Hematopoéticas/metabolismo , Janus Quinase 2/genética , Mutação , Transtornos Mieloproliferativos/genética , Alelos , Animais , Antígenos Ly/metabolismo , Antígenos de Superfície/metabolismo , Biomarcadores/metabolismo , Transplante de Medula Óssea , Ciclo Celular/genética , Linhagem da Célula/genética , Análise por Conglomerados , Dano ao DNA , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/patologia , Imunofenotipagem , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Fenótipo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Quimeras de Transplante
14.
Blood ; 123(25): 3943-50, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24820309

RESUMO

The interferon-γ (IFNγ)/signal transducer and activator of transcription 1 (Stat1) pathway shows higher activity in patients with essential thrombocythemia (ET) than in polycythemia vera (PV) and was proposed to be promoting the ET phenotype. We explored the phenotypic consequences of Stat1 deficiency on the effects of Janus kinase 2 (JAK2)-V617F in vivo by crossing mice expressing JAK2-V617F with Stat1 knockout mice. JAK2-V617F;Stat1(-/-) double transgenic mice showed higher red cell parameters and lower platelet counts compared with JAK2-V617F;Stat1(+/+) mice. Bone marrow transplantation reproduced these phenotypic changes in wild-type recipients, demonstrating that the effect of Stat1 is cell-intrinsic and does not require a Stat1-deficient microenvironment. Deletion of Stat1 increased burst-forming unit-erythroid and reduced colony-forming unit-megakaryocyte colony formation driven by JAK2-V617F, but was not sufficient to completely normalize the platelet count. Gata1, a key regulator of megakaryopoiesis and erythropoiesis, was decreased in Stat1-deficient platelets. V617F transgenic mice with thrombocytosis had higher serum levels of IFNγ than normal controls and patients with ET showed higher IFNγ serum levels than patients with PV. Together, these results support the concept that activating Stat1 in the presence of JAK2-V617F, for example, through IFNγ, constrains erythroid differentiation and promotes megakaryocytic development, resulting in ET phenotype.


Assuntos
Neoplasias da Medula Óssea/genética , Eritropoese/genética , Janus Quinase 2/genética , Mutação , Fator de Transcrição STAT1/genética , Trombopoese/genética , Animais , Western Blotting , Neoplasias da Medula Óssea/sangue , Neoplasias da Medula Óssea/metabolismo , Transplante de Medula Óssea/métodos , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Interferon gama/sangue , Janus Quinase 2/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Policitemia Vera/sangue , Policitemia Vera/genética , Policitemia Vera/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT1/metabolismo , Trombocitemia Essencial/sangue , Trombocitemia Essencial/genética , Trombocitemia Essencial/metabolismo
16.
Blood ; 123(14): 2220-8, 2014 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-24478400

RESUMO

Myeloproliferative neoplasms (MPNs) are a group of clonal disorders characterized by aberrant hematopoietic proliferation and an increased tendency toward leukemic transformation. We used targeted next-generation sequencing (NGS) of 104 genes to detect somatic mutations in a cohort of 197 MPN patients and followed clonal evolution and the impact on clinical outcome. Mutations in calreticulin (CALR) were detected using a sensitive allele-specific polymerase chain reaction. We observed somatic mutations in 90% of patients, and 37% carried somatic mutations other than JAK2 V617F and CALR. The presence of 2 or more somatic mutations significantly reduced overall survival and increased the risk of transformation into acute myeloid leukemia. In particular, somatic mutations with loss of heterozygosity in TP53 were strongly associated with leukemic transformation. We used NGS to follow and quantitate somatic mutations in serial samples from MPN patients. Surprisingly, the number of mutations between early and late patient samples did not significantly change, and during a total follow-up of 133 patient years, only 2 new mutations appeared, suggesting that the mutation rate in MPN is rather low. Our data show that comprehensive mutational screening at diagnosis and during follow-up has considerable potential to identify patients at high risk of disease progression.


Assuntos
Evolução Clonal , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Calreticulina/genética , Análise Mutacional de DNA , Feminino , Humanos , Janus Quinase 2/genética , Masculino , Pessoa de Meia-Idade , Mutação , Transtornos Mieloproliferativos/mortalidade , Prognóstico , Análise de Sobrevida , Adulto Jovem
18.
Blood ; 121(7): 1188-99, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23264594

RESUMO

To establish a preclinical animal model for testing drugs with potential effects on myeloproliferative neoplasms (MPNs), we first performed a detailed phenotypic characterization of Cre-inducible transgenic JAK2-V617F mice. Deleting the conditional mouse Jak2-knockout alleles increased erythropoiesis and accentuated the polycythemia vera phenotype, but did not alter platelet or granulocyte levels. In a transplantation assay, JAK2-V617F(+) BM cells had an advantage over wild-type competitor cells. Using this competitive repopulation assay, we compared the effects of INC424 (ruxolitinib), a dual Jak1/Jak2 inhibitor, and hydroxyurea (HU). HU led to weight loss, but did not reduce spleen weight. The hematologic parameters were lowered and a slight decrease of the mutant allele burden was noted. INC424 had little effect on body weight, but strongly decreased spleen size and rapidly normalized RBC and neutrophil parameters. No significant decrease in the mutant allele burden was observed. INC424 reduced the phospho-Stat5 levels, whereas HU strongly increased phospho-Stat5, most likely because of the elevated erythropoietin levels in response to the HU-induced anemia. This compensatory increase in JAK/STAT signaling may counteract the beneficial effects of cytoreduction at higher doses of HU and represents an adverse effect that should be avoided.


Assuntos
Hidroxiureia/farmacologia , Janus Quinase 2/genética , Policitemia Vera/tratamento farmacológico , Policitemia Vera/genética , Pirazóis/farmacologia , Alelos , Substituição de Aminoácidos , Animais , Transplante de Medula Óssea , Modelos Animais de Doenças , Feminino , Hematopoese/efeitos dos fármacos , Hematopoese/genética , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mutação , Nitrilas , Fenótipo , Policitemia Vera/metabolismo , Policitemia Vera/patologia , Pirimidinas , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais/efeitos dos fármacos
20.
Blood ; 115(10): 2003-7, 2010 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-20061559

RESUMO

Somatic mutations in TET2 occur in patients with myeloproliferative neoplasms and other hematologic malignancies. It has been suggested that TET2 is a tumor suppressor gene and mutations in TET2 precede the acquisition of JAK2-V617F. To examine the order of events, we performed colony assays and genotyped TET2 and JAK2 in individual colonies. In 4 of 8 myeloproliferative neoplasm patients, we found that some colonies with mutated TET2 carried wild-type JAK2, whereas others were JAK2-V617F positive, indicating that TET2 occurred before JAK2-V617F. One of these patients carried a germline TET2 mutation. However, in 2 other patients, we obtained data compatible with the opposite order of events, with JAK2 exon 12 mutation preceding TET2 mutation in one case. Finally, in 2 of 8 patients, the TET2 and JAK2-V617F mutations defined 2 separate clones. The lack of a strict temporal order of occurrence makes it unlikely that mutations in TET2 represent a predisposing event for acquiring mutations in JAK2.


Assuntos
Células Clonais/patologia , Proteínas de Ligação a DNA/genética , Janus Quinase 2/genética , Mutação , Transtornos Mieloproliferativos/genética , Proteínas Proto-Oncogênicas/genética , Idoso , Separação Celular/métodos , Células Clonais/metabolismo , Análise Mutacional de DNA , Dioxigenases , Progressão da Doença , Feminino , Predisposição Genética para Doença , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/fisiologia , Transtornos Mieloproliferativos/patologia , Polimorfismo de Nucleotídeo Único/fisiologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...