Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1385598, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38751786

RESUMO

Prostate cancer (PC) is an aggressive cancer that can progress rapidly and eventually become castrate-resistant prostate cancer (CRPC). Stage IV metastatic castrate-resistant prostate cancer (mCRPC) is an incurable late-stage cancer type with a low 5-year overall survival rate. Targeted therapeutics such as antibody-drug conjugates (ADCs) based on high-affinity monoclonal antibodies and potent drugs conjugated via smart linkers are being developed for PC management. Conjugating further with in vitro or in vivo imaging agents, ADCs can be used as antibody-theranostic conjugates (ATCs) for diagnostic and image-guided drug delivery. In this study, we have developed a novel ATC for PSMA (+) PC therapy utilizing (a) anti-PSMA 5D3 mAb, (b) Aurora A kinase inhibitor, MLN8237, and (c) for the first time using tetrazine (Tz) and trans-cyclooctene (TCO) click chemistry-based conjugation linker (CC linker) in ADC development. The resulting 5D3(CC-MLN8237)3.2 was labeled with suitable fluorophores for in vitro and in vivo imaging. The products were characterized by SDS-PAGE, MALDI-TOF, and DLS and evaluated in vitro by optical imaging, flow cytometry, and WST-8 assay for cytotoxicity in PSMA (+/-) cells. Therapeutic efficacy was determined in human PC xenograft mouse models following a designed treatment schedule. After the treatment study animals were euthanized, and toxicological studies, complete blood count (CBC), blood clinical chemistry analysis, and H&E staining of vital organs were conducted to determine side effects and systemic toxicities. The IC50 values of 5D3(CC-MLN8237)3.2-AF488 in PSMA (+) PC3-PIP and PMSA (-) PC3-Flu cells are 8.17 nM and 161.9 nM, respectively. Pure MLN8237 shows 736.9 nM and 873.4 nM IC50 values for PC3-PIP and PC3-Flu cells, respectively. In vivo study in human xenograft mouse models confirmed high therapeutic efficacy of 5D3(CC-MLN8237)3.2-CF750 with significant control of PSMA (+) tumor growth with minimal systemic toxicity in the treated group compared to PSMA (-) treated and untreated groups. Approximately 70% of PSMA (+) PC3-PIP tumors did not exceed the threshold of the tumor size in the surrogate Kaplan-Meyer analysis. The novel ATC successfully controlled the growth of PSMA (+) tumors in preclinical settings with minimal systemic toxicities. The therapeutic efficacy and favorable safety profile of novel 5D3(CC-MLN8237)3.2 ATC demonstrates their potential use as a theranostic against aggressive PC.

2.
Res Sq ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38464126

RESUMO

Purpose: HER2(+) metastatic breast cancer (mBC) is one of the most aggressive and lethal cancer types among females. While initially effective, targeted therapeutic approaches with trastuzumab and pertuzumab antibodies and antibody-drug conjugates (ADC) lack long-term efficacy against HER2(+) mBC and can cause severe systemic toxicity due to off-target effects. Therefore, the development of novel targeted delivery platforms that minimize toxicity and increase therapeutic efficacy is critical to the treatment of HER2(+) breast cancer (BC). A pretargeting delivery platform can minimize the non-specific accumulation and off-target toxicity caused by traditional one-step delivery method by separating the single delivery step into a pre-targeting step with high-affinity biomarker binding ligand followed by the subsequent delivery step of therapeutic component with fast clearance. Each delivery component is functionalized with bioorthogonal reactive groups that quickly react in situ, forming cross-linked clusters on the cell surface, which facilitates rapid internalization and intracellular delivery of therapeutics. Procedures: We have successfully developed a click chemistry-based pretargeting platform for HER2(+) BC enabling PET-MR image guidance for reduced radiation dose, high sensitivity, and good soft tissue contrast. Radiolabeled trastuzumab and superparamagnetic iron-oxide carriers (uSPIO) were selected as pretargeting and delivery components, respectively. HER2(+) BT-474 cell line and corresponding xenografts were used for in vitro and in vivo studies. Results: An enhanced tumor accumulation as well as tumor-to-organ accumulation ratio was observed in pretargeted mice up to 24 h post uSPIO injection. A 40% local T1 decrease in the pretargeted mice tumor was observed within 4 h, and an overall 15% T1 drop was retained for 24 h post uSPIO injection. Conclusions: Prolonged tumor retention and increased tumor-to-organ accumulation ratio provided a solid foundation for pretargeted image-guided delivery approach for in vivo applications.

3.
ACS Appl Nano Mater ; 5(7): 9625-9632, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37139481

RESUMO

Ultrasmall superparamagnetic iron oxide nanoparticles (uSPIOs) are attractive platforms for the development of smart contrast agents for magnetic resonance imaging (MRI). Oleic acid-capped uSPIOs are commercially available yet hydrophobic, hindering in vivo applications. A hydrophilic ligand with high affinity toward uSPIO surfaces can render uSPIOs water-soluble, biocompatible, and highly stable under physiological conditions. A small overall hydrodynamic diameter ensures optimal pharmacokinetics, tumor delivery profiles, and, of particular interest, enhanced T 1 MR contrasts. In this study, for the first time, we synthesized a ligand that not only fulfills the as-proposed properties but also provides multiple reactive groups for further modifications. The synthesis delivers a facile approach using commercially available reactants, with resultant uSPIO-ligand constructs assembled through a single-step ligand exchange process. Structural and molecular size analyses confirmed size uniformity and small hydrodynamic diameter of the constructs. On average, 43 reactive amine groups were present per uSPIO nanoparticle. Its r 1 relaxivity has been tested on a 7 Tesla MR instrument and is comparable to that of the clinically available T 1 gadolinium-based contrast agent GBCA (1 vs 3 mM-1 s-1, respectively). A significant decrease in tumor T1 (15%) within 1 h of injection and complete signal recovery after 2 h were detected with a dose of 7 µg Fe/g mouse. The agent also has high r 2 relaxivity and can be used for T 2 contrast-enhanced MRI. Taken together, good relaxation and delivery properties and the presence of multiple surface reactive groups can facilitate its application as a universal MRI-compatible nanocarrier platform.

4.
Biomacromolecules ; 22(11): 4606-4617, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34704434

RESUMO

Pretargeted drug delivery has been explored for decades as a promising approach in cancer therapy. An image-guided pretargeting strategy significantly enhances the intrinsic advantages of this approach since imaging the pretargeting step can be used for diagnostic purposes, while imaging of the drug delivery step can be utilized to evaluate drug distribution and assess therapeutic response. A trastuzumab (Tz)-based HER2 pretargeting component (Tz-TCO-[89Zr-DFO]) was developed by conjugating with trans-cyclooctene (TCO) bioorthogonal click chemistry functional groups and deferoxamine (DFO) to enable radiolabeling with a 89Zr PET tracer. The drug delivery component (HSA-DM1-Tt-[99mTc-HyNic]) was developed by conjugating human serum albumin (HSA) with mertansine (DM1), tetrazine (Tt) functional groups, and a HyNic chelator and radiolabeling with 99mTc. For ex vivo biodistribution studies, pretargeting and delivery components (without drug) were administered subsequently to mice bearing human HER2(+) breast cancer xenografts, and a high tumor uptake of Tz-TCO-[89Zr-DFO] (26.4% ID/g) and HSA-Tt-[99mTc-HyNic] (4.6% ID/g) was detected at 24 h postinjection. In vivo treatment studies were performed in the same HER2(+) breast cancer model using PET-SPECT image guidance. The increased tumor uptake of the pretargeting and drug delivery components was detected by PET-CT and SPECT-CT, respectively. The study showed a significant 92% reduction of the relative tumor volume in treated mice (RTV = 0.08 in 26 days), compared to the untreated control mice (RTV = 1.78 in 11 days) and to mice treated with only HSA-DM1-Tt-[99mTc-HyNic] (RTV = 1.88 in 16 days). Multimodality PET-SPECT image-guided and pretargeted drug delivery can be utilized to maximize efficacy, predict therapeutic response, and minimize systemic toxicity.


Assuntos
Neoplasias da Mama , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Animais , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único
5.
Front Oncol ; 10: 1131, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793481

RESUMO

Theranostics are nano-size or molecular-level agents serving for both diagnosis and therapy. Structurally, they are drug delivery systems integrated with molecular or targeted imaging agents. Theranostics are becoming popular because they are targeted therapeutics and can be used with no or minimal changes for diagnostic imaging to aid in precision medicine. Thus, there is a close relation between theranostics and image-guided therapy (IGT), and theranostics are actually a subclass of IGT in which both therapeutic and imaging functionalities are attributed to a single platform. An important theranostics strategy is biological pretargeting. In pretargeted IGT, first, the target is identified by a target-specific natural or synthetic bioligand followed by a nano-scale or molecular drug delivery component, which form therapeutic clusters by in situ conjugation reactions. If pretargeted drug delivery platforms are labeled with multimodal imaging probes, they can be used as theranostics for both diagnostic imaging and therapy. Optical and nuclear imaging techniques have mostly been used in proof-of-concept studies with pretargeted theranostics. The concept of pretargeting in theranostics is comparatively novel and generally requires a confirmed overexpression of surface receptors on targeted cells/tissue. In addition, the receptors should have natural or synthetic bioligands to be used as pretargeting components. Therefore, applications of pretargeting theranostics are still limited to several cancer types, which overexpress cell-surface markers on the target cancer cells. In this review, recent discoveries of pretargeting theranostics in breast, ovarian, prostate, and colorectal cancers are discussed to highlight main strengths and potential limitations the strategy.

6.
Mol Pharm ; 17(9): 3392-3402, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32803984

RESUMO

Prostate cancer (PC) is a potentially high-risk disease and the most common cancer in American men. It is a leading cause of cancer-related deaths in men in the US, second only to lung and bronchus cancer. Advanced and metastatic PC is initially treated with androgen deprivation therapy (ADT), but nearly all cases eventually progress to castrate-resistant prostate cancer (CRPC). CRPC is incurable in the metastatic stage but can be slowed by some conventional chemotherapeutics and second-generation ADT, such as enzalutamide and abiraterone. Therefore, novel therapeutic strategies are urgently needed. Prostate-specific membrane antigen (PSMA) is overexpressed in almost all aggressive PCs. PSMA is widely used as a target for PC imaging and drug delivery. Anti-PSMA monoclonal antibodies (mAbs) have been developed as bioligands for diagnostic imaging and targeted PC therapy. However, these mAbs are successfully used in PC imaging and only a few have gone beyond phase-I for targeted therapy. The 5D3 mAb is a novel, high-affinity, and fast-internalizing anti-PSMA antibody. Importantly, 5D3 mAb demonstrates a unique pattern of cellular localization to the centrosome after internalization in PSMA(+) PC3-PIP cells. These characteristics make 5D3 mAb an ideal bioligand to deliver tubulin inhibitors, such as mertansine, to the cell centrosome, leading to mitotic arrest and elimination of dividing PC cells. We have successfully developed a 5D3 mAb- and mertansine (DM1)-based antibody-drug conjugate (ADC) and evaluated it in vitro for binding affinity, internalization, and cytotoxicity. The in vivo therapeutic efficacy of 5D3-DM1 ADC was evaluated in PSMA(+) PC3-PIP and PSMA(-) PC3-Flu mouse models of human PC. This therapeutic study has revealed that this new anti-PSMA ADC can successfully control the growth of PSMA(+) tumors without inducing systemic toxicity.


Assuntos
Antagonistas de Androgênios/farmacologia , Anticorpos Monoclonais/farmacologia , Antígenos de Superfície/metabolismo , Glutamato Carboxipeptidase II/metabolismo , Imunoconjugados/farmacologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Androstenos/farmacologia , Animais , Benzamidas/farmacologia , Linhagem Celular Tumoral , Centrossomo/metabolismo , Humanos , Masculino , Camundongos , Camundongos Nus , Nitrilas/farmacologia , Células PC-3 , Feniltioidantoína/farmacologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Moduladores de Tubulina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Mol Pharm ; 17(1): 98-108, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31840521

RESUMO

Prostate cancer is primarily fatal after it becomes metastatic and castration-resistant despite novel combined hormonal and chemotherapeutic regimens. Hence, new therapeutic concepts and drug delivery strategies are urgently needed for the eradication of this devastating disease. Here we report the highly specific, in situ click chemistry driven pretargeted delivery of cytotoxic drug carriers to PSMA(+) prostate cancer cells. Anti-PSMA 5D3 mAb and its F(ab')2 fragments were functionalized with trans-cyclooctene (TCO), labeled with a fluorophore, and used as pretargeting components. Human serum albumin (ALB) was loaded with the DM1 antitubulin agent, functionalized with PEGylated tetrazine (PEG4-Tz), labeled with a fluorophore, and used as the drug delivery component. The internalization kinetics of components and the therapeutic efficacy of the pretargeted click therapy were studied in PSMA(+) PC3-PIP and PSMA(-) PC3-Flu control cells. The F(ab')2 fragments were internalized faster than 5D3 mAb in PSMA(+) PC3-PIP cells. In the two-component pretargeted imaging study, both components were colocalized in a perinuclear location of the cytoplasm of PC3-PIP cells. Better colocalization was achieved when 5D3 mAb was used as the pretargeting component. Consecutively, the in vitro cell viability study shows a significantly higher therapeutic effect of click therapy in PC3-PIP cells when 5D3 mAb was used for pretargeting, compared to its F(ab')2 derivative. 5D3 mAb has a longer lifetime on the cell surface, when compared to its F(ab')2 analogue, enabling efficient cross-linking with the drug delivery component and increased efficacy. Pretargeting and drug delivery components were cross-linked via multiple bioorthogonal click chemistry reactions on the surface of PSMA(+) PC cells forming nanoclusters, which undergo fast cellular internalization and intracellular transport to perinuclear locations.


Assuntos
Anticorpos Monoclonais/química , Antígenos de Superfície/imunologia , Antineoplásicos Fitogênicos/uso terapêutico , Química Click/métodos , Sistemas de Liberação de Medicamentos/métodos , Glutamato Carboxipeptidase II/imunologia , Maitansina/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Moduladores de Tubulina/uso terapêutico , Albuminas , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Octanos/química , Fluorbenzenos/química , Glutamato Carboxipeptidase II/metabolismo , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/metabolismo , Fragmentos Fab das Imunoglobulinas/uso terapêutico , Masculino , Nanomedicina , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/metabolismo
8.
J Magn Reson ; 291: 141-151, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29705040

RESUMO

Most diseases, especially cancer, would significantly benefit from precision medicine where treatment is shaped for the individual. The concept of theragnostics or theranostics emerged around 2002 to describe the incorporation of diagnostic assays into the selection of therapy for this purpose. Increasingly, theranostics has been used for strategies that combine noninvasive imaging-based diagnostics with therapy. Within the past decade theranostic imaging has transformed into a rapidly expanding field that is located at the interface of diagnosis and therapy. A critical need in cancer treatment is to minimize damage to normal tissue. Molecular imaging can be applied to identify targets specific to cancer with imaging, design agents against these targets to visualize their delivery, and monitor response to treatment, with the overall purpose of minimizing collateral damage. Genomic and proteomic profiling can provide an extensive 'fingerprint' of each tumor. With this cancer fingerprint, theranostic agents can be designed to personalize treatment for precision medicine of cancer, and minimize damage to normal tissue. Here, for the first time, we have introduced the term 'metabolotheranostics' to describe strategies where disease-based alterations in metabolic pathways detected by MRS are specifically targeted with image-guided delivery platforms to achieve disease-specific therapy. The versatility of MRI and MRS in molecular and functional imaging makes these technologies especially important in theranostic MRI and 'metabolotheranostics'. Our purpose here is to provide insights into the capabilities and applications of this exciting new field in cancer treatment with a focus on MRI and MRS.


Assuntos
Oncologia/métodos , Metabolômica , Neoplasias/diagnóstico , Neoplasias/terapia , Medicina de Precisão/métodos , Nanomedicina Teranóstica/métodos , Animais , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Imagem Molecular , Neoplasias/diagnóstico por imagem
9.
Top Magn Reson Imaging ; 25(5): 205-213, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27748712

RESUMO

Click chemistry provides fast, convenient, versatile, and reliable chemical reactions that take place between pairs of functional groups of small molecules that can be purified without chromatographic methods. Due to the fast kinetics and low or no elimination of byproducts, click chemistry is a promising approach that is rapidly gaining acceptance in drug discovery, radiochemistry, bioconjugation, and nanoscience applications. Increasing use of click chemistry in synthetic procedures or as a bioconjugation technique in diagnostic imaging is occurring because click reactions are fast, provide a quantitative yield, and produce a minimal amount of nontoxic byproducts. This review summarizes the recent application of click chemistry in magnetic resonance imaging and discusses the directions for applying novel click reactions and strategies for further improving magnetic resonance imaging performance.


Assuntos
Química Click , Meios de Contraste/química , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/tendências , Estrutura Molecular
10.
PLoS One ; 11(5): e0156294, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27244470

RESUMO

This paper reports the damaging effects of magnetic iron-oxide nanoparticles (MNP) on magnetically labeled cancer cells when subjected to oscillating gradients in a strong external magnetic field. Human breast cancer MDA-MB-231 cells were labeled with MNP, placed in the high magnetic field, and subjected to oscillating gradients generated by an imaging gradient system of a 9.4T preclinical MRI system. Changes in cell morphology and a decrease in cell viability were detected in cells treated with oscillating gradients. The cytotoxicity was determined qualitatively and quantitatively by microscopic imaging and cell viability assays. An approximately 26.6% reduction in cell viability was detected in magnetically labeled cells subjected to the combined effect of a static magnetic field and oscillating gradients. No reduction in cell viability was observed in unlabeled cells subjected to gradients, or in MNP-labeled cells in the static magnetic field. As no increase in local temperature was observed, the cell damage was not a result of hyperthermia. Currently, we consider the coherent motion of internalized and aggregated nanoparticles that produce mechanical moments as a potential mechanism of cell destruction. The formation and dynamics of the intracellular aggregates of nanoparticles were visualized by optical and transmission electron microscopy (TEM). The images revealed a rapid formation of elongated MNP aggregates in the cells, which were aligned with the external magnetic field. This strategy provides a new way to eradicate a specific population of MNP-labeled cells, potentially with magnetic resonance imaging guidance using standard MRI equipment, with minimal side effects for the host.


Assuntos
Campos Magnéticos , Nanopartículas de Magnetita/uso terapêutico , Neoplasias de Mama Triplo Negativas/terapia , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Humanos , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/ultraestrutura , Microscopia Eletrônica de Transmissão , Temperatura , Neoplasias de Mama Triplo Negativas/patologia
11.
Sci Rep ; 6: 24298, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27068794

RESUMO

The HER2 receptor is overexpressed in approximately 20% of breast cancers and is associated with tumorigenesis, metastasis, and a poor prognosis. Trastuzumab is a first-line targeted drug used against HER2(+) breast cancers; however, at least 50% of HER2(+) tumors develop resistance to trastuzumab. To treat these patients, trastuzumab-based antibody-drug conjugates (ACDs) have been developed and are currently used in the clinic. Despite their high efficacy, the long circulation half-life and non-specific binding of cytotoxic ADCs can result in systemic toxicity. In addition, standard ADCs do not provide an image-guided mode of administration. Here, we have developed a two-component, two-step, pre-targeting drug delivery system integrated with image guidance to circumvent these issues. In this strategy, HER2 receptors are pre-labeled with a functionalized trastuzumab antibody followed by the delivery of drug-loaded nanocarriers. Both components are cross-linked by multiple bioorthogonal click reactions in situ on the surface of the target cell and internalized as nanoclusters. We have explored the efficacy of this delivery strategy in HER2(+) human breast cancer models. Our therapeutic study confirms the high therapeutic efficacy of the new delivery system, with no significant toxicity.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Sistemas de Liberação de Medicamentos , Receptor ErbB-2/análise , Trastuzumab/administração & dosagem , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Modelos Animais de Doenças , Humanos , Camundongos , Trastuzumab/efeitos adversos , Trastuzumab/farmacologia , Resultado do Tratamento
12.
Pharm Res ; 32(11): 3746-3755, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26078000

RESUMO

PURPOSE: Magnetic resonance imaging (MRI) is widely used for diagnostic imaging in preclinical studies and in clinical settings. Considering the intrinsic low sensitivity and poor specificity of standard MRI contrast agents, the enhanced delivery of MRI tracers into tumors is an important challenge to be addressed. This study was intended to investigate whether delivery of superparamagnetic iron oxide nanoparticles (SPIONs) can be enhanced by liposomal SPION formulations for either "passive" delivery into tumor via the enhanced permeability and retention (EPR) effect or "active" targeted delivery to tumor endothelium via the receptors for vascular endothelial growth factor (VEGFRs). METHODS: In vivo MRI of orthotopic MDA-MB-231 tumors was performed on a preclinical 9.4 T MRI scanner following intravenous administration of either free/non-targeted or targeted liposomal SPIONs. RESULTS: In vivo MRI study revealed that only the non-targeted liposomal formulation provided a statistically significant accumulation of SPIONs in the tumor at four hours post-injection. The EPR effect contributes to improved accumulation of liposomal SPIONs in tumors compared to the presumably more transient retention during the targeting of the tumor vasculature via VEGFRs. CONCLUSIONS: A non-targeted liposomal formulation of SPIONs could be the optimal option for MRI detection of breast tumors and for the development of therapeutic liposomes for MRI-guided therapy.


Assuntos
Meios de Contraste/química , Óxido Ferroso-Férrico/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Neoplasias Mamárias Experimentais/patologia , Imagem Molecular/métodos , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Doxorrubicina/análogos & derivados , Doxorrubicina/farmacocinética , Doxorrubicina/uso terapêutico , Feminino , Humanos , Imuno-Histoquímica , Lipossomos , Neoplasias Mamárias Experimentais/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Tamanho da Partícula , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/uso terapêutico , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Propriedades de Superfície , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Biomaterials ; 35(7): 2346-54, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24342725

RESUMO

Nanocarriers play an important role in targeted cancer chemotherapy. The optimal nanocarrier delivery system should provide efficient and highly specific recognition of the target cells and rapid internalization of the therapeutic cargo to reduce systemic toxicity as well as to increase the cytotoxicity to cancer cells. To this end, we developed a two-step, two-component targeted delivery system based on antibody and drug-loaded nanocarrier that uses bioorthogonal click reactions for specific internalization of nanotherapeutics. The pretargeting component, anti-HER2 humanized monoclonal antibody, trastuzumab, functionalized with azide groups labels cancer cells that overexpress HER2 surface receptors. The drug carrier component, dibenzylcyclooctyne substituted albumin conjugated with paclitaxel, reacts specifically with the pretargeting component. These two components form cross-linked clusters on the cell surface, which facilitates the internalization of the complex. This strategy demonstrated substantial cellular internalization of clusters consisted of HER2 receptors, modified trastuzumab and paclitaxel-loaded albumin nanocarriers, and subsequent significant cytotoxicity in HER2-positive BT-474 breast cancer cells. Our results show high efficacy of this strategy for targeted nanotherapeutics. We foresee to broaden the applications of this strategy using agents such as radionuclides, toxins, and interfering RNA.


Assuntos
Anticorpos/administração & dosagem , Sistemas de Liberação de Medicamentos , Nanotecnologia , Anticorpos Monoclonais Humanizados/administração & dosagem , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Química Click , Humanos , Microscopia Confocal , Paclitaxel/administração & dosagem , Receptor ErbB-2/imunologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Trastuzumab
14.
J Am Chem Soc ; 133(17): 6780-90, 2011 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-21473622

RESUMO

A new class of fluorescent triazaborolopyridinium compounds was synthesized from hydrazones of 2-hydrazinylpyridine (HPY) and evaluated as potential dyes for live-cell imaging applications. The HPY dyes are small, their absorption/emission properties are tunable through variation of pyridyl or hydrazone substituents, and they offer favorable photophysical characteristics featuring large Stokes shifts and general insensitivity to solvent or pH. The stability, neutral charge, cell membrane permeability, and favorable relative influences on the water solubility of HPY conjugates are complementary to existing fluorescent dyes and offer advantages for the development of receptor-targeted small-molecule probes. This potential was assessed through the development of a new class of cysteine-derived HPY-conjugate imaging agents for the kinesin spindle protein (KSP) that is expressed in the cytoplasm during mitosis and is a promising chemotherapeutic target. Conjugates possessing the neutral HPY or charged Alexa Fluor dyes that function as potent, selective allosteric inhibitors of the KSP motor were compared using biochemical and cell-based phenotypic assays and live-cell imaging. These results demonstrate the effectiveness of the HPY dye moiety as a component of probes for an intracellular protein target and highlight the importance of dye structure in determining the pathway of cell entry and the overall performance of small-molecule conjugates as imaging agents.


Assuntos
Membrana Celular/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Compostos de Piridínio/química , Compostos de Piridínio/metabolismo , Permeabilidade da Membrana Celular , Corantes Fluorescentes/síntese química , Células HeLa , Humanos , Compostos de Piridínio/síntese química , Piridonas/síntese química , Piridonas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...