Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lab Chip ; 23(1): 62-71, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36477089

RESUMO

For many blood-based diagnostic tests, including prophylactic drug analysis and malaria assays, red blood cells must be lysed effectively prior to their use in an analytical workflow. We report on a finger-actuated blood lysate preparation device, which utilises a previously reported acoustofluidic micromixer module. The integrated device includes a range of innovations from a sample interface, to the integration of blisters on a laser engraved surface and a large volume (130 µL) one-stroke manual pump which could be useful in other low-cost microfluidic-based point-of-care devices. The adaptability of the acoustic mixer is demonstrated on highly viscous fluids, including whole blood, with up to 65% percent volume fraction of red blood cells. Used in conjunction with a lysis buffer, the micromixer unit is also shown to lyse a finger-prick (approximately 20 µL) blood sample in 30 seconds and benchmarked across ten donor samples. Finally, we demonstrate the ease of use of the fully integrated device. Cheap, modular, but reliable, finger-actuated microfluidic functions could open up opportunities for the development of diagnostics with minimal resources.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Dedos , Eritrócitos , Dispositivos Lab-On-A-Chip
2.
PLoS One ; 17(7): e0266769, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35802693

RESUMO

Blood plasma separation is a prerequisite in numerous biomedical assays involving low abundance plasma-borne biomarkers and thus is the fundamental step before many bioanalytical steps. High-capacity refrigerated centrifuges, which have the advantage of handling large volumes of blood samples, are widely utilized, but they are bulky, non-transportable, and prohibitively expensive for low-resource settings, with prices starting at $1,500. On the other hand, there are low-cost commercial and open-source micro-centrifuges available, but they are incapable of handling typical clinical amounts of blood samples (2-10mL). There is currently no low-cost CE marked centrifuge that can process large volumes of clinical blood samples on the market. As a solution, we customised the rotor of a commercially available low-cost micro-centrifuge (~$125) using 3D printing to enable centrifugation of large clinical blood samples in resource poor-settings. Our custom adaptor ($15) can hold two 9 mL S-Monovette tubes and achieve the same separation performance (yield, cell count, hemolysis, albumin levels) as the control benchtop refrigerated centrifuge, and even outperformed the control in platelet separation by at least four times. This low-cost open-source centrifugation system capable of processing clinical blood tubes could be valuable to low-resource settings where centrifugation is required immediately after blood withdrawal for further testing.


Assuntos
Plasma , Software , Centrifugação , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...