Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
China CDC Wkly ; 6(30): 740-753, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39114314

RESUMO

This article offers a thorough review of current early warning systems (EWS) and advocates for establishing a unified research network for EWS in infectious diseases between China and Australia. We propose that future research should focus on improving infectious disease surveillance by integrating data from both countries to enhance predictive models and intervention strategies. The article highlights the need for standardized data formats and terminologies, improved surveillance capabilities, and the development of robust spatiotemporal predictive models. It concludes by examining the potential benefits and challenges of this collaborative approach and its implications for global infectious disease surveillance. This is particularly relevant to the ongoing project, early warning systems for Infectious Diseases between China and Australia (NetEWAC), which aims to use seasonal influenza as a case study to analyze influenza trends, peak activities, and potential inter-hemispheric transmission patterns. The project seeks to integrate data from both hemispheres to improve outbreak predictions and develop a spatiotemporal predictive modeling system for seasonal influenza transmission based on socio-environmental factors.

2.
Environ Res ; 249: 118568, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38417659

RESUMO

Climate, weather and environmental change have significantly influenced patterns of infectious disease transmission, necessitating the development of early warning systems to anticipate potential impacts and respond in a timely and effective way. Statistical modelling plays a pivotal role in understanding the intricate relationships between climatic factors and infectious disease transmission. For example, time series regression modelling and spatial cluster analysis have been employed to identify risk factors and predict spatial and temporal patterns of infectious diseases. Recently advanced spatio-temporal models and machine learning offer an increasingly robust framework for modelling uncertainty, which is essential in climate-driven disease surveillance due to the dynamic and multifaceted nature of the data. Moreover, Artificial Intelligence (AI) techniques, including deep learning and neural networks, excel in capturing intricate patterns and hidden relationships within climate and environmental data sets. Web-based data has emerged as a powerful complement to other datasets encompassing climate variables and disease occurrences. However, given the complexity and non-linearity of climate-disease interactions, advanced techniques are required to integrate and analyse these diverse data to obtain more accurate predictions of impending outbreaks, epidemics or pandemics. This article presents an overview of an approach to creating climate-driven early warning systems with a focus on statistical model suitability and selection, along with recommendations for utilizing spatio-temporal and machine learning techniques. By addressing the limitations and embracing the recommendations for future research, we could enhance preparedness and response strategies, ultimately contributing to the safeguarding of public health in the face of evolving climate challenges.


Assuntos
Mudança Climática , Doenças Transmissíveis , Modelos Estatísticos , Doenças Transmissíveis/epidemiologia , Doenças Transmissíveis/transmissão , Humanos , Clima , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA