Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Iran J Basic Med Sci ; 27(3): 326-334, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333757

RESUMO

Objectives: Neurological disorders are the world's most distressing problem. The adverse effects of current medications continue to compel scientists to seek safer, more effective, and economically affordable alternatives. In this vein, we explored the effect of D-Pinitol on isoproterenol-induced neurotoxicity in mice. Materials and Methods: Forty-two mice were randomly distributed into 7 groups each having 6 animals. Group I; received saline. Group II; received isoproterenol (ISO) 15 mg/kg/day, s.c. for 20 days. Group III, IV; received 50 and 100 mg/kg/day/oral of D-Pinitol, respectively along with ISO for 20 days. Group V; received D-Pinitol 100 mg/kg/day/oral for 20 days. Group VI; received propranolol 20 mg/kg/day/oral and ISO for 20 days. Group VII; received propranolol 20 mg/kg/day/oral for 20 days. On the 21st day after behavioral tests, blood was collected and mice were sacrificed for various biochemical, histopathological, and immunohistochemical analyses. Results: Chronic administration of isoproterenol caused neurotoxicity, cognitive dysfunction, and histopathological changes in the brain as evidenced by increase in GFAP, oxidative stress (via SOD, CAT, TBARS, and GSH), neuroinflammation (NF-kB, TNF-α, IL-6, and IL-10), and decrease in AchE and BDNF. Co-administration of D-Pinitol (100 mg/kg) significantly prevented these pathological alterations. The cognitive improvement was also observed through the forced swim test, elevated plus maze test, and rotarod test. Conclusion: Our findings on D-Pinitol thus clearly established its neuroprotective role in ISO-induced neurodegeneration in Swiss albino mice.

2.
Toxicol Appl Pharmacol ; 483: 116838, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38278497

RESUMO

Cyclophosphamide (CP), although a potent anti-cancer drug, causes cardiotoxicity as a side effect that limits its use. Hence, a specific medicine that can lower cardiotoxicity and be utilised as an adjuvant in cancer treatment is very much needed. In this light, we intended to assess the protective potential of levocabastine (LEV) on CP-induced cardiotoxicity in Swiss albino mice. Mice were administered LEV (50 and 100 µg/kg, i.p.) daily for 14 days and CP at 200 mg/kg, intraperitoneally once on the 7th day. On the 15th day, mice were weighed, blood withdrawn then sacrificed and hearts were removed to estimate various biochemical and histopathological parameters. CP 200 mg/kg significantly increased cardiac troponin T, LDH, CK-MB, interleukin-1ß, IL-6, TNF-α, TBARS, nitrite, and decreased CAT, GSH, and SOD levels, thus, manifested cardiac damage, inflammation, oxidative stress, and nitrative stress, cumulatively causing cardiotoxicity. CP also elevated the expression of various markers including cleaved caspase-3, NF-κB, TLR4, NLRP3, and fibrotic lesions in cardiac tissues, whereas decreased hematological parameters (RBCs, platelets, and Hb) to confirm cardiotoxicity. LEV and fenofibrate (FF) treatment reversed these changes towards normal and showed a significant protective effect against CP. The results showed the protective role of LEV in restoring CP-induced cardiotoxicity in terms of inflammation, apoptosis, oxidative stress, cardiac injury and histopathological damage. Thus, levocabastine can be used as an adjuvant to cyclophosphamide in cancer treatment but a thorough study with various animal cancer models is further needed to establish the fact.


Assuntos
Cardiotoxicidade , NF-kappa B , Piperidinas , Camundongos , Animais , Cardiotoxicidade/patologia , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ciclofosfamida/toxicidade , Estresse Oxidativo , Transdução de Sinais , Inflamação/metabolismo , Apoptose
3.
Drug Deliv ; 30(1): 2241661, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37559381

RESUMO

Cyclophosphamide (CP) is one of the most extensively used antineoplastic drug, but the nephrotoxicity caused by this drug is a major limiting factor for its use. Nerolidol (NERO) is a natural bioactive compound with diverse pharmacological actions. In Vitro and in vivo study was performed using HK-2 renal cells and Swiss Albino mice. Cell lines and animals were treated with NERO 25 and 50 µM + 30 µM CP (in vitro), 200 and 400 mg/kg, p.o. NERO from day 1 to day 15 + 200 mg/kg, i.p. CP on day 17 as single intraperitoneal injection (in vivo). The makers of oxidative stress, renal-specific injury markers, inflammation, apoptosis, fibrosis, and histopathological changes were studied. The study's outcome showed a significant reduction in the level of malonaldehyde and interleukin-6 (p < 0.01), tumor necrosis factor-α, IL-1ß (p < 0.001), and an increase in the superoxide dismutase, catalase, glutathione and interleukin-10 level (p < 0.01), in the in vivo study when treated with NERO 400 and compared with CP 200. In Vitro study showed reduced expression of nuclear factor kappa light chain enhancer of activated B cells, cleaved caspase-3, kidney injury molecule-1 and transforming growth factor-ß-1 (p < 0.001), when treated with NERO 50 µM whereas NERO 25 µM only reduced the level of cleaved caspase-3 (p < 0.05) when compared with 30 µM. NERO 400 also reduced uric acid (p < 0.05), urea (p < 0.01), blood urea nitrogen, and serum creatinine levels (p < 0.001) and increased the level of blood-urea-nitrogen/creatinine ratio (p < 0.001). Additionally, the level of fibrosis-specific markers such as transforming growth factor-ß1, hyaluronic acid (p < 0.01), 4-hydroxyproline, a collagen-rich area in Masson's' trichome stain, and Smad3 expression was also significantly reduced (p < 0.001). Furthermore, the outcome of multiple renal staining showed structural reversal aberrations, reduction of the thick basement membrane, and glycogen level toward normal when treated with NERO 400. Thus, the study showed a novel mechanistic modality of NERO against cyclophosphamide-induced renal toxicity. The outcome of this study can be considered a step closer to the development of an adjuvant to mitigate cyclophosphamide-induced renal toxicity among patients treated with cyclophosphamide.


Assuntos
Rim , NF-kappa B , Animais , Camundongos , Apoptose , Caspase 3/metabolismo , Ciclofosfamida/efeitos adversos , Fibrose , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Rim/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Ureia/metabolismo
4.
Iran J Basic Med Sci ; 26(5): 517-525, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37051097

RESUMO

Objectives: Cardiovascular diseases are widespread across the globe, and heart failure (HF) accounts for the majority of heart-associated deaths. Target-based drug therapy is much needed for the management of heart failure. We have designed this study to evaluate icariin for its cardioprotective activity in the isoproterenol (ISO) induced postinfarction model. We have randomly distributed Wistar rats into seven groups, i.e., vehicle control; isoproterenol-treated; icariin per se; sildenafil per se; ISO + icariin 5; ISO + icariin 10; and ISO + sildenafil groups. ISO (85 mg/kg, subcutaneous) was administered at 24 hr for two consecutive days to produce cardiac injury, followed by icariin administration at 5 mg/kg and 10 mg/kg orally for 56 days. Materials and Methods: Rats were subjected to hemodynamic measurements biweekly. After 24 hr of the completion of dosing, animals were sacrificed, and markers for oxidative stress, fibrosis, inflammation, and cell death were measured. Transmission electron microscopy (TEM), histopathology, and MT staining of cardiac tissue were also done to assess the pathological and fibrotic architectural damage. Results: A significant decline in hemodynamics and an anti-oxidant collapse were found in ISO-intoxicated rats. Alterations in the levels of cyclic guanosine monophosphate (cGMP), interleukin-10 (IL-10), Tumor necrosis factor (TNF-α), and brain natriuretic peptide (BNP) were also observed in serum. Up-regulation of caspase-3, nuclear factor (NF-ĸB), and decline in expression of nuclear factor (NrF-2) contribute to cardiac damage. The treatment with icariin and sildenafil considerably reversed the toxic changes toward normal. Conclusion: Increased cGMP and Nrf2 expression and suppressed NF-ĸB-caspase-3 signaling play a pivotal role in icariin-mediated cardioprotection.

5.
Inflammation ; 46(1): 56-87, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36006570

RESUMO

Alzheimer's disease (AD) is one of the most prevalent neurodegenerative disorders. The etiology and pathology of AD are complicated, variable, and yet to be completely discovered. However, the involvement of inflammasomes, particularly the NLRP3 inflammasome, has been emphasized recently. NLRP3 is a critical pattern recognition receptor involved in the expression of immune responses and has been found to play a significant role in the development of various immunological and neurological disorders such as multiple sclerosis, ulcerative colitis, gout, diabetes, and AD. It is a multimeric protein which releases various cytokines and causes caspase-1 activation through the process known as pyroptosis. Increased levels of cytokines (IL-1ß and IL-18), caspase-1 activation, and neuropathogenic stimulus lead to the formation of proinflammatory microglial M1. Progressive researches have also shown that besides loss of neurons, the pathophysiology of AD primarily includes amyloid beta (Aß) accumulation, generation of oxidative stress, and microglial damage leading to activation of NLRP3 inflammasome that eventually leads to neuroinflammation and dementia. It has been suggested in the literature that suppressing the activity of the NLRP3 inflammasome has substantial potential to prevent, manage, and treat Alzheimer's disease. The present review discusses the functional composition, various models, signaling molecules, pathways, and evidence of NLRP3 activation in AD. The manuscript also discusses the synthetic drugs, their clinical status, and projected natural products as a potential therapeutic approach to manage and treat NLRP3 mediated AD.


Assuntos
Doença de Alzheimer , Inflamassomos , Humanos , Inflamassomos/metabolismo , Doença de Alzheimer/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Peptídeos beta-Amiloides , Citocinas/metabolismo , Caspases
6.
Iran J Basic Med Sci ; 25(7): 827-841, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36033946

RESUMO

Objectives: Inflammation is the major progenitor of obesity and associated metabolic disorders. The current study investigated the modulatory role of saroglitazar on adipocyte dysfunction and associated inflammation in monosodium glutamate (MSG) obese Wistar rats. Materials and Methods: The molecular docking simulation studies of saroglitazar and fenofibrate were performed on the ligand-binding domain of NLRP3 and NF- κB. Under in vivo study, neonatal pups received normal saline or MSG (4 g/kg, SC) for 7 alternate days after birth. After keeping for 42 days as such, animals were divided into seven groups: Normal control; MSG control; MSG + saroglitazar (2 mg/kg); MSG + saroglitazar (4 mg/kg); saroglitazar (4 mg/kg) per se; MSG + fenofibrate (100 mg/kg); fenofibrate (100 mg/kg) per se. Drug treatments were given orally, from the 42nd to 70th day. On day 71, blood was collected and animals were sacrificed for isolation of liver and fat pads. Results: In silico study showed significant binding of saroglitazar and fenofibrate against NLRP3 and NF- κB. Saroglitazar significantly reduced body weight, body mass index, Lee's index, fat pad weights, adiposity index, decreased serum lipids, interleukin-1ß (IL-1ß), tumor necrosis factor-α(TNF-α), interleukin-6 (IL-6), leptin, insulin, blood glucose, HOMA-IR values, oxidative stress in the liver and increased hepatic low-density lipoprotein receptor levels. Histopathological analysis of the liver showed decreased inflammation and vacuolization, and reduced adipocyte cell size. Immunohistochemical analysis showed suppression of NLRP3 in epididymal adipocytes and NF- κB expression in the liver. Conclusion: Saroglitazar ameliorated obesity and associated inflammation via modulation of NLRP3 inflammasome and NF- κB in MSG obese Wistar rats.

7.
Clin Exp Pharmacol Physiol ; 49(11): 1232-1245, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35866379

RESUMO

Cardiovascular diseases are the most disturbing problems throughout the world. The side effects of existing drugs are continuously compelling the scientist to look for better options in terms of safety, efficacy and cost-effectiveness. Our study is also a move in this direction. We have chosen D-pinitol to see its cardioprotective role in isoproterenol-induced myocardial infarction in Swiss albino mice. Grouping was made by dividing mice into eight groups (n = 6). Group I, control; Group II, isoproterenol (ISO) (150 mg/kg, i.p.); Group III, D-pinitol (PIN) (25 mg); Group IV, PIN (50 mg); Group V, PIN (100 mg) per kg per oral, respectively with ISO; Group VI, PIN per se (100 mg D-pinitol only); Group VII, Propranolol (PRO) (20 mg/kg/oral) with ISO; and Group VIII, PRO per se (20 mg/kg, p.o.). After 24 h of the last dose, the blood sample was collected for biochemical parameters, then mice were, killed through cervical dislocation under anaesthesia and cardiac tissue was collected for biochemical, histopathological and ultrastructural evaluation. Administration of ISO in mice altered the level of antioxidant markers, cardiac injury markers and inflammatory markers, which were significantly restored towards normal by D-pinitol at the dose of 50 and 100 mg. 25 mg of D-pinitol dosage, did not produce significant cardio protection. The histopathological and ultrastructural analysis further confirmed these findings. Our study showed that D-pinitol significantly protected myocardial damage which was induced by ISO and reverted oxidative stress and inflammation considerably.


Assuntos
Antioxidantes , Infarto do Miocárdio , Animais , Antioxidantes/metabolismo , Arritmias Cardíacas/tratamento farmacológico , Cardiotônicos/efeitos adversos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inositol/análogos & derivados , Isoproterenol/toxicidade , Camundongos , Infarto do Miocárdio/induzido quimicamente , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/prevenção & controle , Miocárdio/metabolismo , Estresse Oxidativo , Propranolol/efeitos adversos , Propranolol/metabolismo , Ratos , Ratos Wistar
8.
Drug Deliv ; 29(1): 1492-1511, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35543534

RESUMO

Radiotherapy is one of the extensively used therapeutic modalities in glioblastoma and other types of cancers. Radiotherapy is either used as a first-line approach or combined with pharmacotherapy or surgery to manage and treat cancer. Although the use of radiotherapy significantly increased the survival time of patients, but its use has been reported with marked neuroinflammation and cognitive dysfunction that eventually reduced the quality of life of patients. Based on the preclinical and clinical investigations, the profound role of increased oxidative stress, nuclear translocation of NF-kB, production of proinflammatory cytokines such as TNF-α, IL-6, IL-ß, increased level of MMPs, increased apoptosis, reduced angiogenesis, neurogenesis, and histological aberrations in CA1, CA2, CA3 and DG region of the hippocampus have been reported. Various pharmacotherapeutic drugs are being used as an adjuvant to counteract this neurotoxic manifestation. Still, most of these drugs suffer from systemic adverse effect, causes interference to ongoing chemotherapy, and exhibit pharmacokinetic limitations in crossing the blood-brain barrier. Therefore, various phytoconstituents, their nano carrier-based drug delivery systems and miRNAs have been explored to overcome the aforementioned limitations. The present review is focused on the mechanism and evidence of radiotherapy-induced neuroinflammation and cognitive dysfunction, pathological and molecular changes in the brain homeostasis, available adjuvants, their limitations. Additionally, the potential role and mechanism of neuroprotection of various nanocarrier based natural products and miRNAs have been discussed.


Assuntos
MicroRNAs , Síndromes Neurotóxicas , Sistemas de Liberação de Medicamentos , Hipocampo , Humanos , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/etiologia , Compostos Fitoquímicos/farmacologia , Qualidade de Vida
9.
Curr Mol Pharmacol ; 15(1): 3-22, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33538684

RESUMO

Sports-related traumatic brain injury (TBI) is one of the common neurological maladies experienced by athletes. Earlier, the term 'punch drunk syndrome' was used in the case TBI of boxers and now this term is replaced by chronic traumatic encephalopathy (CTE). Sports-related brain injury can either be short-term or long-term. A common instance of brain injury encompasses subdural hematoma, concussion, cognitive dysfunction, amnesia, headache, vision issue, axonopathy, or even death, if it remains undiagnosed or untreated. Further, chronic TBI may lead to pathogenesis of neuroinflammation and neurodegeneration via tauopathy, the formation of neurofibrillary tangles, and damage to the blood-brain barrier, microglial, and astrocyte activation. Thus, altered pathological, neurochemical, and neurometabolic attributes lead to the modulation of multiple signaling pathways and cause neurological dysfunction. Available pharmaceutical interventions are based on one drug one target hypothesis and are thereby unable to cover altered multiple signaling pathways. However, in recent times, pharmacological intervention of nutrients and nutraceuticals have been explored as they exert a multifactorial mode of action and maintain over homeostasis of the body. There are various reports available showing the positive therapeutic effect of nutraceuticals in sport-related brain injury. Therefore, in the current article, we have discussed the pathology, neurological consequence, sequelae, and perpetuation of sports-related brain injury. Further, we have discussed various nutraceutical supplements as well as available animal models to explore the neuroprotective effect/ upshots of these nutraceuticals in sports-related brain injury.


Assuntos
Traumatismos em Atletas , Lesões Encefálicas , Esportes , Traumatismos em Atletas/complicações , Traumatismos em Atletas/tratamento farmacológico , Traumatismos em Atletas/patologia , Encéfalo/patologia , Lesões Encefálicas/diagnóstico , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/patologia , Suplementos Nutricionais , Humanos
10.
Curr Mol Pharmacol ; 15(1): 23-50, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33687906

RESUMO

Alzheimer's disease (AD) is one of the common chronic neurological disorders and associated with cognitive dysfunction, depression and progressive dementia. The presence of ß-amyloid or senile plaques, hyper-phosphorylated tau proteins, neurofibrillary tangle, oxidative-nitrative stress, mitochondrial dysfunction, endoplasmic reticulum stress, neuroinflammation and derailed neurotransmitter status are the hallmarks of AD. Currently, donepezil, memantine, rivastigmine and galantamine are approved by the FDA for symptomatic management. It is well-known that these approved drugs only exert symptomatic relief and possess poor patient-compliance. Additionally, various published evidence showed the neuroprotective potential of various nutraceuticals via their antioxidant, anti-inflammatory and anti-apoptotic effects in the preclinical and clinical studies. These nutraceuticals possess a significant neuroprotective potential and hence, can be a future pharmacotherapeutic for the management and treatment of AD. However, nutraceuticals suffer from certain major limitations such as poor solubility, low bioavailability, low stability, fast hepatic- metabolism and larger particle size. These pharmacokinetic attributes restrict their entry into the brain via the blood-brain barrier. Therefore, to overcome such issues, various nanoformulations of nutraceuticals have been developed, that allow their effective delivery into the brain owing to reduced particle size, increased lipophilicity, increased bioavailability and avoidance of fast hepatic metabolism. Thus, in this review, we have discussed the etiology of AD, focusing on the pharmacotherapeutics of nutraceuticals with preclinical and clinical evidence, discussed pharmaceutical limitations and regulatory aspects of nutraceuticals to ensure safety and efficacy. We have further explored various nanoformulations of nutraceuticals as a novel approach to overcome the existing pharmaceutical limitations and for effective delivery into the brain.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/prevenção & controle , Peptídeos beta-Amiloides/metabolismo , Suplementos Nutricionais , Donepezila/uso terapêutico , Galantamina/uso terapêutico , Humanos
11.
Med Cannabis Cannabinoids ; 4(1): 43-60, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34676349

RESUMO

Cannabis sativa L. is an annual herbaceous dioecious plant which was first cultivated by agricultural human societies in Asia. Over the period of time, various parts of the plant like leaf, flower, and seed were used for recreational as well as therapeutic purposes. The main chemical components of Cannabis sativa are termed as cannabinoids, among them the key psychoactive constituent is Δ-9-tetrahydrocannabinol and cannabidiol (CBD) as active nonpsychotic constituent. Upon doing extensive literature review, it was found that cannabis has been widely studied for a number of disorders. Very recently, a pure CBD formulation, named Epidiolex, got a green flag from both United States Food and Drug Administration and Drug Enforcement Administration for 2 rare types of epilepsies. This laid a milestone in medical cannabis research. This review intends to give a basic and extensive assessment, from past till present, of the ethnological, plant, chemical, pharmacological, and legal aspects of C. sativa. Further, this review contemplates the evidence the studies obtained of cannabis components on Alzheimer's, Parkinson's, amyotrophic lateral sclerosis, multiple sclerosis, emesis, epilepsy, chronic pain, and cancer as a cytotoxic agent as well as a palliative therapy. The assessment in this study was done by reviewing in extensive details from studies on historical importance, ethnopharmacological aspects, and legal grounds of C. sativa from extensive literature available on the scientific databases, with a vision for elevating further pharmaceutical research to investigate its total potential as a therapeutic agent.

12.
Curr Top Med Chem ; 21(29): 2647-2670, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34392821

RESUMO

Cyclophosphamide (CP) is an extensively used anticancer drug, but its cardiotoxic manifestation is a major concern for its widespread clinical use. The observed cardiotoxic attributes have been reported at the therapeutic dose and often result into a high mortality rate and poor clinical outcome. Fall in the level of antioxidant enzymes catalase (CAT), reduced glutathione (GSH), superoxide dismutase (SOD) generation of reactive oxygen species (ROS), inflammatory cytokines nuclear factor kappa-light-chain enhancer of activated B cells (NF-kB), tumor necrosis factor-alpha (TNF-α), interleukin 1 beta (IL- 1ß), apoptotic proteins (caspases) and direct damage to myocardial tissue (histological and ultrastructural damage) are some of the reported manifestations of cardiotoxicity. The observed clinical attributes of CP-induced cardiotoxicity are myocarditis, hemorrhage, thrombosis, myocardial infarction (MI), reduced ejection fraction, altered electrocardiogram (ECG) reading and heart failure. However, unlike Daxarazasone (an adjuvant to reduce doxorubicin-induced cardiotoxicity), no approved adjuvant is available to mitigate CPinduced cardiotoxicity. Thus, various natural bioactives have been explored for the possible cardioprotective effect against CP-induced cardiotoxicity. In the current manuscript, we have discussed the clinical and preclinical aspects of CP-induced cardiotoxicity, its clinically used combination with other anticancer drugs, and the available therapeutic regimen to mitigate this cardiotoxicity. Further, we discussed the limitations of available synthetic drugs used as an adjuvant and discussed various natural bioactive and their experimental details. This manuscript's overall goal is to throw light on CP-induced cardiotoxicity and summarize all the experimental data so that researchers working in this field may scientifically get up-to-date information in one place.


Assuntos
Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Cardiotônicos/farmacologia , Cardiotônicos/uso terapêutico , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Ciclofosfamida/efeitos adversos , Antioxidantes/metabolismo , Apoptose , Cardiotoxicidade/metabolismo , Cardiotoxicidade/patologia , Humanos , Miocárdio/metabolismo , Miocárdio/patologia , Estresse Oxidativo
13.
Expert Rev Anti Infect Ther ; 19(9): 1083-1092, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33618607

RESUMO

Introduction: The novel coronavirus has caused significant mortality worldwide and is primarily associated with severe acute respiratory distress syndrome (ARDS). Apart from ARDS, clinical reports have shown noticeable cardiovascular complications among the patients of COVID-19. Infection from virus, stimulation of cytokine storm, altered immune response, and damage to myocardial tissue are some of the proposed mechanisms of cardiovascular complications in COVID-19.Areas covered: Based on the clinical reports of CVDs among COVID-19 patients, we have discussed the molecular mechanisms involved in cardiovascular pathogenesis, its prevalence, and association with COVID-19, and various available therapeutic modality for the treatment.Expert opinion: Seeing the cardiovascular complications in COVID-19 patients and its association with the existing drug, risk-benefit ratio of treatment paradigm, as well as the level of cardiac injury biomarkers must be monitored regularly. Additionally, a well-designed clinical trial should be conducted where head to head comparison can be made with anti-COVID-19 drugs and cardioprotective anti-inflammatory drugs. Nevertheless, vaccines are the best-suited approach, but until then, sanitization, social distancing, and active lifestyle are the best ways to beat this global pandemic situation.


Assuntos
COVID-19/complicações , Doenças Cardiovasculares/prevenção & controle , Anti-Inflamatórios/administração & dosagem , COVID-19/prevenção & controle , Vacinas contra COVID-19/administração & dosagem , Cardiotônicos/administração & dosagem , Doenças Cardiovasculares/fisiopatologia , Doenças Cardiovasculares/virologia , Humanos , Tratamento Farmacológico da COVID-19
14.
Drug Res (Stuttg) ; 71(4): 173-179, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33434935

RESUMO

Coronavirus disease (COVID-19) emerged from Wuhan, has now become pandemic and the mortality rate is growing exponentially. Clinical complication and fatality rate is much higher for patients having co-morbid issues. Compromised immune response and hyper inflammation is hall mark of pathogenesis and major cause of mortality. Cytokine release syndrome (CRS) or cytokine storm is a term used to affiliate the situation of hyper inflammation and therefore use of anti-cytokine and anti-inflammatory drugs is used to take care of this situation. Looking into the clinical benefit of these anti-inflammatory drugs, many of them enter into clinical trials. However, understanding the immunopathology of COVID-19 is important otherwise, indiscriminate use of these drugs could be fetal as there exists a very fine line of difference between viral clearing cytokines and inflammatory cytokines. If any drug suppresses the viral clearing cytokines, it will worsen the situation and hence, the use of these drugs must be based on the clinical condition, viral load, co-existing disease condition and severity of the infection.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19/metabolismo , Síndrome da Liberação de Citocina/tratamento farmacológico , Citocinas/metabolismo , Drogas em Investigação/uso terapêutico , Ativação de Macrófagos/efeitos dos fármacos , Anti-Inflamatórios/uso terapêutico , COVID-19/complicações , Síndrome da Liberação de Citocina/etiologia , Síndrome da Liberação de Citocina/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo
15.
Curr Drug Targets ; 22(6): 685-720, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33302832

RESUMO

Alzheimer's disease is a common and most chronic neurological disorder (NDs) associated with cognitive dysfunction. Pathologically, Alzheimer's disease (AD) is characterized by the presence of ß-amyloid (Aß) plaques, hyper-phosphorylated tau proteins, and neurofibrillary tangles, however, persistence oxidative-nitrative stress, endoplasmic reticulum stress, mitochondrial dysfunction, inflammatory cytokines, pro-apoptotic proteins along with altered neurotransmitters level are common etiological attributes in its pathogenesis. Rivastigmine, memantine, galantamine, and donepezil are FDA approved drugs for symptomatic management of AD, whereas tacrine has been withdrawn because of hepatotoxic profile. These approved drugs only exert symptomatic relief and exhibit poor patient compliance. In the current scenario, the number of published evidence shows the neuroprotective potential of naturally occurring bioactive molecules via their antioxidant, anti-inflammatory, antiapoptotic and neurotransmitter modulatory properties. Despite their potent therapeutic implications, concerns have arisen in context to their efficacy and probable clinical outcome. Thus, to overcome these glitches, many heterocyclic and cyclic hydrocarbon compounds inspired by natural sources have been synthesized and showed improved therapeutic activity. Computational studies (molecular docking) have been used to predict the binding affinity of these natural bioactive as well as synthetic compounds derived from natural sources for the acetylcholine esterase, α/ß secretase Nuclear Factor kappa- light-chain-enhancer of activated B cells (NF-kB), Nuclear factor erythroid 2-related factor 2(Nrf2) and other neurological targets. Thus, in this review, we have discussed the molecular etiology of AD, focused on the pharmacotherapeutics of natural products, chemical and pharmacological aspects and multi-targeted designed ligands (MTDLs) of synthetic and semisynthetic molecules derived from the natural sources along with some important on-going clinical trials.


Assuntos
Doença de Alzheimer , Produtos Biológicos/farmacologia , Doença de Alzheimer/tratamento farmacológico , Desenho de Fármacos , Humanos , Ligantes , Simulação de Acoplamento Molecular
16.
Biofactors ; 46(6): 963-973, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32941697

RESUMO

Cyclophosphamide (CP)-induced hepatotoxic manifestations are major concern for patients undergoing chemotherapy, which often limit its therapeutic utility. Nerolidol (NER) is a natural bioactive molecule having potent gonadoprotective, neuroprotective, and cardioprotective properties but has not been explored for its hepatoprotective effect and underlying mechanism. Therefore, in the current study hepatoprotective potential of nerolidol was studied in CP-induced hepatic oxidative stress, inflammation, apoptosis, and fibrosis via modulation of Nrf2, NF-κB p65, caspase-3, TGF-ß1, and associated biochemical status in Swiss albino mice. NER (200, 400 mg/kg, p.o) and fenofibrate (FF) 80 mg/kg, p.o. were administered from first to fourteenth day and CP was administered at the dose of 200 mg/kg, i.p on seventh day. On fifteenth day, animals were sacrificed and estimation of oxidative stress, inflammation, apoptosis, fibrosis, histopathology (H E and MT staining), and immunohistochemistry was performed in the liver tissue. Administration of NER effectively normalized the elevated level of hepatic injury markers (alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase), marker of oxidative stress that is, malondialdehyde, inflammatory cytokines (TNF-α, IL-6, IL-1ß, and IL-10), NF-κB p65, apoptotic marker (cleaved caspase 3) and increased the level of Nrf2 and antioxidant enzymes (superoxide dismutase, CAT, and glutathione). Treatment with NER further reduced the structural damage of hepatocytes and markers of hepatic fibrosis such as TGF-ß1, hyaluronic acid, 4-hydroxyproline and collagen-rich stained area, estimated by MT staining. Findings of the current study showed that nerolidol exhibited potent antioxidant, anti-inflammatory, anti-apoptotic, and anti-fibrotic potential and thus acted as hepatoprotective agent. Present study represents novel mechanism of nerolidol against CP-induced hepatotoxicity. However, further studies are needed to use nerolidol as an adjuvant in chemotherapeutically treated patients.


Assuntos
Caspase 3/metabolismo , Ciclofosfamida/administração & dosagem , Inflamação/prevenção & controle , Hepatopatias/prevenção & controle , Fator 2 Relacionado a NF-E2/metabolismo , Sesquiterpenos/farmacologia , Fator de Transcrição RelA/metabolismo , Animais , Apoptose , Modelos Animais de Doenças , Fibrose , Fígado/efeitos dos fármacos , Hepatopatias/patologia , Masculino , Camundongos , Transdução de Sinais/efeitos dos fármacos
17.
Exp Neurol ; 334: 113464, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32941795

RESUMO

Neuroinflammation is one of the most common etiology in various neurological disorders and responsible for multi-array neurotoxic manifestations such as neurodegeneration, neurotransmitters alteration and cognitive dysfunction. NR (Nerolidol) is a natural bioactive molecule which possesses significant antioxidant and anti-inflammatory potential, but suffers from glitches of low solubility, low bioavailability and fast hepatic metabolism. In the current study, we fabricated nano-engineered lipid carrier of nerolidol (NR-NLC) for its effective delivery into the brain and explored its effect on neuroinflammation, neurotransmitters level and on dysfunctional behavioral attributes induced by CYC (cyclophosphamide). The binding affinity of nerolidol with NLRP3 and TLR-4 was performed which showed stong interaction between them. NR-NLC was prepared by the ultrasonication methods and particle size was determined by Zeta-sizer. Swiss Albino mice were divided into 5 groups (n = 6), assessed for behavioral dysfunction, and sacrificed on the fifteenth day following cyclophosphamide treatment. Brains were then removed and used for biochemical, histopathological, immunohistochemical and fluorescence microscopic analysis. Biochemical analysis showed increased levels of MDA, TNF-α, IL-6, IL-1ß, acetylcholine esterase, BDNF, 5-HT and dopamine, and reduced levels of SOD, CAT, GSH, IL-10, along with significant behavioral dysfunction in cyclophosphamide-treated animals. Significant neuronal damage was also observed in the histological study. Immunohistochemical analysis demonstrated increased expression of NLRP3 and caspase-1. Fluorescence microscopic analysis showed significant availability of NR-NLC in the hippocampus and cortex region. In contrast, treatment with NR-NLC effectively mitigated the aforementioned neurotoxic manifestation as compared to NR suspension. Our results showed potent neuroprotective effect of NR-NLC via modulation of oxidative stress, NLRP3 inflammasome, caspase-1 and neurotransmitter status.


Assuntos
Caspase 1/biossíntese , Ciclofosfamida/toxicidade , Sistemas de Liberação de Medicamentos/métodos , Proteína 3 que Contém Domínio de Pirina da Família NLR/biossíntese , Nanopartículas/administração & dosagem , Sesquiterpenos/administração & dosagem , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Caspase 1/química , Engenharia Química/métodos , Ciclofosfamida/antagonistas & inibidores , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/síntese química , Lipídeos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/química , Nanopartículas/química , Estrutura Secundária de Proteína , Sesquiterpenos/síntese química
18.
Environ Sci Pollut Res Int ; 27(33): 41175-41198, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32820440

RESUMO

Environmental pollutants are recognized as one of the major concerns for public health and responsible for various forms of neurological disorders. Some of the common sources of environmental pollutants related to neurotoxic manifestations are industrial waste, pesticides, automobile exhaust, laboratory waste, and burning of terrestrial waste. Among various environmental pollutants, particulate matter, ultrafine particulate matter, nanoparticles, and lipophilic vaporized toxicant (acrolein) easily cross the blood-brain barrier, activate innate immune responses in the astrocytes, microglia, and neurons, and exert neurotoxicity. Growing shreds of evidence from human epidemiological studies have correlated the environmental pollutants with neuroinflammation, oxidative stress, endoplasmic reticulum stress, mitochondrial dysfunction, myelin sheath disruption, and alterations in the blood-brain barrier anatomy leading to cognitive dysfunction and poor quality of life. These environmental pollutants also considerably cause developmental neurotoxicity, exhibit teratogenic effect and mental growth retardance, and reduce IQ level. Until now, the exact mechanism of pollutant-induced neurotoxicity is not known, but studies have shown interference of pollutants with the endogenous antioxidant defense system, inflammatory pathway (Nrf2/NF-kB, MAPKs/PI3K, and Akt/GSK3ß), modulation of neurotransmitters, and reduction in long-term potentiation. In the current review, various sources of pollutants and exposure to the human population, developmental neurotoxicity, and molecular mechanism of different pollutants involved in the pathogenesis of different neurological disorders have been discussed.


Assuntos
Poluentes Ambientais , Síndromes Neurotóxicas , Poluentes Ambientais/toxicidade , Humanos , Estresse Oxidativo , Material Particulado , Qualidade de Vida
19.
Curr Gene Ther ; 20(3): 184-194, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32674730

RESUMO

Neurological disorders are one of the major threat for health care system as they put enormous socioeconomic burden. All aged populations are susceptible to one or other neurological problems with symptoms of neuroinflammation, neurodegeneration and cognitive dysfunction. At present, available pharmacotherapeutics are insufficient to treat these diseased conditions and in most cases, they provide only palliative effect. It was also found that the molecular etiology of neurological disorders is directly linked with the alteration in genetic makeup, which can be inherited or triggered by the injury, environmental toxins and by some existing disease. Therefore, to take care of this situation, gene therapy has emerged as an advanced modality that claims to permanently cure the disease by deletion, silencing or edition of faulty genes and by insertion of healthier genes. In this modality, vectors (viral and non-viral) are used to deliver targeted gene into a specific region of the brain via various routes. At present, gene therapy has shown positive outcomes in complex neurological disorders, such as Parkinson's disease, Alzheimer's disease, Huntington disease, Multiple sclerosis, Amyotrophic lateral sclerosis and in lysosomal storage disease. However, there are some limitations such as immunogenic reactions non-specificity of viral vectors and a lack of effective biomarkers to understand the efficacy of therapy. Considerable progress has been made to improve vector design, gene selection and targeted delivery. This review article deals with the current status of gene therapy in neurological disorders along with its clinical relevance, challenges and future prospective.


Assuntos
Sistemas CRISPR-Cas/genética , Técnicas de Transferência de Genes/tendências , Terapia Genética , Doenças do Sistema Nervoso/terapia , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/terapia , Encéfalo/patologia , Humanos , Doença de Huntington/genética , Doença de Huntington/terapia , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/terapia , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/patologia , Doença de Parkinson/genética , Doença de Parkinson/terapia
20.
Andrologia ; 52(4): e13535, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32048763

RESUMO

Cyclophosphamide (CP) is commonly used as antineoplastic and immunosuppressant drug with noticeable gonadotoxic profile. Nerolidol (NER) is a sesquiterpene with potent antioxidant and anti-inflammatory properties. Thus, the present study was designed to explore its possible gonadal protective potential against cyclophosphamide-induced testicular, epididymal, seminal and spermatozoal toxicities. Animals were divided into five groups: control (normal saline for 14 days), treatment group (NER 200 and 400 mg/kg, p.o) for 14 days along with a single dose of cyclophosphamide (200 mg/kg, i.p) on 7th day, toxic and Per se groups (cyclophosphamide 200 mg/kg i.p) on 7th day and NER 400 mg/kg for 14 days respectively. Animals were sacrificed on the 15 day, and body weight, weight of reproductive organs, testosterone level, sperm count, biochemical parameters, histopathological and immunohistochemical studies were performed in the testes, epididymis and in the serum. CP administration induced oxidative stress, nitrative stress, inflammation, reduced testosterone level, sperm count, increased expression of MPO and caused histological aberrations in the testes, epididymis and seminal vesicles. CP caused reduced sperm count, sperm motility and testosterone level which got reversed upon treatment with nerolidol in a dose-dependent manner. Nerolidol thus acted as a gonadoprotective molecule and prevented the gonadotoxicity of CP.


Assuntos
Antineoplásicos Alquilantes/efeitos adversos , Ciclofosfamida/efeitos adversos , Doenças dos Genitais Masculinos/prevenção & controle , Sesquiterpenos/uso terapêutico , Testículo/efeitos dos fármacos , Animais , Avaliação Pré-Clínica de Medicamentos , Epididimo/efeitos dos fármacos , Epididimo/metabolismo , Doenças dos Genitais Masculinos/induzido quimicamente , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Peroxidase/metabolismo , Sesquiterpenos/farmacologia , Testículo/metabolismo , Testosterona/sangue , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...