Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 418
Filtrar
1.
Sci Rep ; 14(1): 9700, 2024 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678148

RESUMO

Ocular abnormal angiogenesis and edema are featured in several ocular diseases. S1P signaling via S1P1 likely is part of the negative feedback mechanism necessary to maintain vascular health. In this study, we conducted pharmacological experiments to determine whether ASP4058, a sphingosine 1-phosphate receptor 1/5 (S1P1/5) agonist, is useful in abnormal vascular pathology in the eye. First, human retinal microvascular endothelial cells (HRMECs) were examined using vascular endothelial growth factor (VEGF)-induced cell proliferation and hyperpermeability. ASP4058 showed high affinity and inhibited VEGF-induced proliferation and hyperpermeability of HRMECs. Furthermore, S1P1 expression and localization changes were examined in the murine laser-induced choroidal neovascularization (CNV) model, a mouse model of exudative age-related macular degeneration, and the efficacy of ASP4058 was verified. In the CNV model mice, S1P1 tended to decrease in expression immediately after laser irradiation and colocalized with endothelial cells and Müller glial cells. Oral administration of ASP4058 also suppressed vascular hyperpermeability and CNV, and the effect was comparable to that of the intravitreal administration of aflibercept, an anti-VEGF drug. Next, efficacy was also examined in a retinal vein occlusion (RVO) model in which retinal vascular permeability was increased. ASP4058 dose-dependently suppressed the intraretinal edema. In addition, it suppressed the expansion of the perfusion area observed in the RVO model. ASP4058 also suppressed the production of VEGF in the eye. Collectively, ASP4058 can be a potential therapeutic agent that normalizes abnormal vascular pathology, such as age-related macular degeneration and RVO, through its direct action on endothelial cells.


Assuntos
Neovascularização de Coroide , Modelos Animais de Doenças , Animais , Humanos , Neovascularização de Coroide/tratamento farmacológico , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/patologia , Camundongos , Receptores de Esfingosina-1-Fosfato/metabolismo , Receptores de Esfingosina-1-Fosfato/agonistas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proliferação de Células/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Receptores de Lisoesfingolipídeo/agonistas , Receptores de Lisoesfingolipídeo/metabolismo , Masculino
2.
J Pharmacol Sci ; 155(2): 44-51, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677785

RESUMO

Subretinal hemorrhages result in poor vision and visual field defects. During hemorrhage, several potentially toxic substances are released from iron-based hemoglobin and hemin, inducing cellular damage, the detailed mechanisms of which remain unknown. We examined the effects of excess intracellular iron on retinal pigment epithelial (RPE) cells. A Fe2+ probe, SiRhoNox-1 was used to investigate Fe2+ accumulation after treatment with hemoglobin or hemin in the human RPE cell line ARPE-19. We also evaluated the production of reactive oxygen species (ROS) and lipid peroxidation. Furthermore, the protective effect of-an iron chelator, 2,2'-bipyridyl (BP), and ferrostatin-1 (Fer-1) on the cell damage, was evaluated. Fe2+ accumulation increased in the hemoglobin- or hemin-treated groups, as well as intracellular ROS production and lipid peroxidation. In contrast, BP treatment suppressed RPE cell death, ROS production, and lipid peroxidation. Pretreatment with Fer-1 ameliorated cell death in a concentration-dependent manner and suppressed ROS production and lipid peroxidation. Taken together, these findings indicate that hemoglobin and hemin, as well as subretinal hemorrhage, may induce RPE cell damage and visual dysfunction via intracellular iron accumulation.


Assuntos
Hemina , Hemoglobinas , Ferro , Epitélio Pigmentado da Retina , Humanos , Morte Celular/efeitos dos fármacos , Linhagem Celular , Cicloexilaminas/farmacologia , Hemina/farmacologia , Hemoglobinas/metabolismo , Ferro/metabolismo , Quelantes de Ferro/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Fenilenodiaminas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/patologia
3.
J Pharmacol Sci ; 154(2): 52-60, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38246728

RESUMO

Many glaucoma treatments focus on lowering intraocular pressure (IOP), with novel drugs continuing to be developed. One widely used model involves raising IOP by applying a laser to the trabecular iris angle (TIA) of cynomolgus monkeys to damage the trabecular meshwork. This model, however, presents challenges such as varying IOP values, potential trabecular meshwork damage, and risk of animal distress. This study investigated whether animals with naturally high IOP (>25 mmHg) could be used to effectively evaluate IOP-lowering drugs, thereby possibly replacing laser-induced models. Relationships between TIA size, IOP, and pupil diameter were also examined. Three representative IOP-lowering drugs (latanoprost, timolol, ripasudil) were administered, followed by multiple IOP measurements and assessment of corneal thickness, TIA, and pupil diameter via anterior segment optical coherence tomography (AS-OCT). There was a positive correlation was noted between IOP and corneal thickness before instillation, and a negative correlation between IOP and TIA before instillation. Our findings suggest animals with naturally high IOP could be beneficial for glaucoma research and development as a viable replacement for the laser-induced model and that measuring TIA using AS-OCT along with IOP yields a more detailed evaluation.


Assuntos
Glaucoma , Pressão Intraocular , Animais , Macaca fascicularis , Timolol/farmacologia , Malha Trabecular
4.
BMC Complement Med Ther ; 24(1): 3, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167061

RESUMO

BACKGROUND: Blue light exposure is known to induce reactive oxygen species (ROS) production and increased endoplasmic reticulum stress, leading to apoptosis of photoreceptors. Maqui berry (Aristotelia chilensis) is a fruit enriched in anthocyanins, known for beneficial biological activities such as antioxidation. In this study, we investigated the effects of Maqui berry extract (MBE) and its constituents on the subcellular damage induced by blue light irradiation in mouse retina-derived 661W cells. METHODS: We evaluated the effects of MBE and its main delphinidins, delphinidin 3-O-sambubioside-5-O-glucoside (D3S5G) and delphinidin 3,5-O-diglucoside (D3G5G), on blue light-induced damage on retinal cell line 661W cells. We investigated cell death, the production of ROS, and changes in organelle morphology using fluorescence microscopy. The signaling pathway linked to stress response was evaluated by immunoblotting in the whole cell lysates or nuclear fractions. We also examined the effects of MBE and delphinidins against rotenone-induced mitochondrial dysfunction. RESULTS: Blue light-induced cell death, increased intracellular ROS generation and mitochondrial fragmentation, decreased ATP-production coupled respiration, caused lysosomal membrane permeabilization, and increased ATF4 protein level. Treatment with MBE and its main constituents, delphinidin 3-O-sambubioside-5-O-glucoside and delphinidin 3,5-O-diglucoside, prevented these defects. Furthermore, MBE and delphinidins also protected 661W cells from rotenone-induced cell death. CONCLUSIONS: Maqui berry may be a useful protective agent for photoreceptors against the oxidative damage induced by exposure to blue light.


Assuntos
Antocianinas , Elaeocarpaceae , Animais , Camundongos , Antocianinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Frutas , Luz Azul , Rotenona , Elaeocarpaceae/metabolismo , Glucosídeos , Organelas/metabolismo
5.
Yakugaku Zasshi ; 143(10): 799-806, 2023.
Artigo em Japonês | MEDLINE | ID: mdl-37779008

RESUMO

Based on its founding spirit of "Strong, Correct and Clear" Gifu Pharmaceutical University (hereinafter referred to as "the University") has adopted the human and environmentally friendly Pharmacy (Green Pharmacy) as its basic philosophy. As the University fulfills its social mission to enrich and strengthen education, research, and social activities, it faces many challenges. These include incorporation, fostering academia-industry-government collaboration, life-science center development and expanding the role of the affiliated pharmacy. The University will continually strive to recognize trends in the social environment and make the effort to respond to challenges when they arise. This effort will allow the University faculty and staff to maintain a sustainable institution that can respond to social challenges while continuing to share the benefits of education, research, and drug discovery/development with the community. The University is committed to train world class Pharmacist-Scientist. This review explains the rationale for the University's transition to a single six-year program. It also gives an update on the current status of education, research, and the mobile pharmacy (MP) since its introduction. Furthermore, it highlights advancements in academic-industry-government collaboration.


Assuntos
Serviços Comunitários de Farmácia , Educação em Farmácia , Farmácias , Farmácia , Humanos , Farmacêuticos
6.
FASEB Bioadv ; 5(10): 395-411, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37810172

RESUMO

Myocardial infarction (MI) is a lethal disease that causes irreversible cardiomyocyte death and subsequent cardiovascular remodeling. We have previously shown that the administration of recombinant progranulin (PGRN) protects against myocardial ischemia and reperfusion injury. However, the post-MI role of PGRN remains unclear. In the present study, we investigated the effects of PGRN deficiency on cardiac remodeling after MI. Wild-type and PGRN-knockout mice were subjected to MI by ligation of the left coronary artery for histological, electrophysiological, and protein expression analysis. Cardiac macrophage subpopulations were analyzed by flow cytometry. Bone marrow-derived macrophages (BMDMs) were acquired and treated with LPS + IFN-γ and IL-4 to evaluate mRNA levels and phagocytic ability. PGRN expression was gradually increased in the whole heart at 1, 3, and 7 days after MI. Macrophages abundantly expressed PGRN at the border areas at 3 days post-MI. PGRN-knockout mice showed higher mortality, increased LV fibrosis, and severe arrhythmia following MI. PGRN deficiency increased the levels of CD206 and MerTK expression and macrophage infiltration in the infarcted myocardium, which was attributed to a larger subpopulation of cardiac CCR2+ Ly6Clow CD11b+ macrophages. PGRN-deficient BMDMs exhibited higher TGF-ß, IL-4R, and lower IL-1ß, IL-10 and increased acute phagocytosis following stimulation of LPS and IFN-γ. PGRN deficiency reduced survival and increased cardiac fibrosis following MI with the induction of abnormal subpopulation of cardiac macrophages early after MI, thereby providing insight into the relationship between properly initiating cardiac repair and macrophage polarization after MI.

7.
Redox Biol ; 67: 102890, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37738924

RESUMO

Toxoplasmosis is a major infectious disease, affecting approximately one-third of the world's population; its main clinical manifestation, ocular toxoplasmosis (OT), is a severe sight-threatening disease. Nevertheless, the diagnosis of OT is based on clinical findings, which needs improvement, even with biochemical tests, such as polymerase chain reaction and antibody detections. Furthermore, the efficacy of OT-targeted treatment is limited; thus, additional measures for diagnosis and treatments are needed. Here, we for the first time report a significantly reduced iron concentration in the vitreous humor (VH) of human patients infected with OT. To obtain further insights into molecular mechanisms, we established a mouse model of T. gondii infection, in which intravitreally injected tracer 57Fe, was accumulated in the neurosensory retina. T. gondii-infected eyes showed increased lipid peroxidation, reduction of glutathione peroxidase-4 expression and mitochondrial deformity in the photoreceptor as cristae loss. These findings strongly suggest the involvement of ferroptotic process in the photoreceptor of OT. In addition, deferiprone, an FDA-approved iron chelator, reduced the iron uptake but also ameliorated toxoplasma-induced retinochoroiditis by reducing retinal inflammation. In conclusion, the iron levels in the VH could serve as diagnostic markers and iron chelators as potential treatments for OT.


Assuntos
Coriorretinite , Ferroptose , Toxoplasma , Toxoplasmose Ocular , Animais , Camundongos , Humanos , Toxoplasmose Ocular/diagnóstico , Coriorretinite/diagnóstico , Retina , Ferro
8.
Biol Pharm Bull ; 46(8): 1032-1040, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37532554

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor symptoms and neuropathological features, such as loss of dopaminergic neurons in the substantia nigra pars compacta and accumulation of alpha-synuclein (α-Syn). Progranulin (PGRN) is a secreted growth factor that exhibits anti-inflammatory properties and regulates lysosomal function. Although autophagy-lysosome pathway is the main degradative pathway for α-Syn, the molecular mechanistic relationship between PD and PGRN remains unclear. In this study, we investigated the role of PGRN in PD pathology. PGRN protein expression in striatum was increased in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD model mice. Intracerebroventricular (i.c.v.) administration of PGRN ameliorated the decrease in expression of tyrosine hydroxylase, a dopaminergic neuron marker, in MPTP-treated mice. Furthermore, i.c.v. administration of PGRN ameliorated 6-hydroxydopamine-induced motor deficits. In SH-SY5Y human neuroblastoma cells, 1-methyl-4-phenylpyridinium ion (MPP+), an active metabolite of MPTP, increased α-Syn expression. In contrast, PGRN ameliorated MPP+-induced increase in α-Syn expression. Although PGRN decreased the levels of autophagy-related proteins Sequestosome-1 (p62) and MAP1LC3 (LC3)-II, PGRN did not influence the phosphorylation of AMP-activated protein kinase and mechanistic target of rapamycin, which are also proteins that regulate autophagy. Immunostaining analysis showed that PGRN ameliorated MPP+-induced increase of LC3 puncta, indicator of autophagosome, and co-localization of LC3 and α-Syn. The DALGreen assay showed that PGRN ameliorated MPP+-induced decreasing trend of autolysosomes. These results suggest that PGRN participates in α-Syn degradation via acceleration of the autophagy-lysosome pathway and is a potential therapeutic target for PD.


Assuntos
Neuroblastoma , Doença de Parkinson , Animais , Humanos , Camundongos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/efeitos adversos , alfa-Sinucleína/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Lisossomos/metabolismo , Camundongos Endogâmicos C57BL , Neuroblastoma/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Progranulinas/metabolismo
9.
Arterioscler Thromb Vasc Biol ; 43(6): 927-942, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37078291

RESUMO

BACKGROUND: Endothelial cell activation is tightly controlled by the balance between VEGF (vascular endothelial cell growth factor) and Notch signaling pathway. VEGF destabilizes blood vessels and promotes neovascularization, which are common features of sight-threatening ocular vascular disorders. Here, we show that BCL6B (B-cell CLL/lymphoma 6 member B protein), also known as BAZF, ZBTB28, and ZNF62, plays a pivotal role in the development of retinal edema and neovascularization. METHODS: The pathophysiological physiological role of BCL6B was investigated in cellular and animal models mimicking 2 pathological conditions: retinal vein occlusion and choroidal neovascularization. An in vitro experimental system was used in which human retinal microvascular endothelial cells were supplemented with VEGF. Choroidal neovascularization cynomolgus monkey model was generated to investigate the involvement of BCL6B in the pathogenesis. Mice lacking BCL6B or treated with BCL6B-targeting small-interfering ribose nucleic acid were examined for histological and molecular phenotypes. RESULTS: In retinal endothelial cells, the BCL6B expression level was increased by VEGF. BCL6B-deficient endothelial cells showed Notch signal activation and attenuated cord formation via blockage of the VEGF-VEGFR2 signaling pathway. Optical coherence tomography images showed that choroidal neovascularization lesions were decreased by BCL6B-targeting small-interfering ribose nucleic acid. Although BCL6B mRNA expression was significantly increased in the retina, BCL6B-targeting small-interfering ribose nucleic acid suppressed ocular edema in the neuroretina. The increase in proangiogenic cytokines and breakdown of the inner blood-retinal barrier were abrogated in BCL6B knockout (KO) mice via Notch transcriptional activation by CBF1 (C promotor-binding factor 1) and its activator, the NICD (notch intracellular domain). Immunostaining showed that Müller cell activation, a source of VEGF, was diminished in BCL6B-KO retinas. CONCLUSIONS: These data indicate that BCL6B may be a novel therapeutic target for ocular vascular diseases characterized by ocular neovascularization and edema.


Assuntos
Neovascularização de Coroide , Ácidos Nucleicos , Neovascularização Retiniana , Doenças Vasculares , Animais , Humanos , Camundongos , Neovascularização de Coroide/genética , Neovascularização de Coroide/metabolismo , Células Endoteliais/metabolismo , Macaca fascicularis/metabolismo , Ácidos Nucleicos/metabolismo , Ácidos Nucleicos/uso terapêutico , Neovascularização Retiniana/genética , Neovascularização Retiniana/metabolismo , Ribose/metabolismo , Ribose/uso terapêutico , Doenças Vasculares/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
Biol Pharm Bull ; 46(3): 473-481, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36858576

RESUMO

Macular edema causes vision loss in patients with retinal vein occlusion (RVO) and diabetic macular edema (DME). The intravitreal injection of anti-vascular endothelial growth factor (VEGF) agents is used for treatment; however, this therapy is invasive, and recurrence occurs in some cases. The establishment of a non-invasive treatment would help to solve these problems. Here, we focused on arctigenin, a lignan polyphenol found in burdock sprout, and has effects on inflammatory and microcirculatory when taken orally. We hypothesized that oral intake of arctigenin could be effective against retinal edema in RVO and DME. In this study, the degree of retinal edema by measuring the total retinal thickness using optical coherence tomography (OCT) and the thickness of the inner nuclear layer (INL) by hematoxylin-eosin (H&E) staining were investigated. Oral administration of arctigenin ameliorated retinal edema in an RVO murine model by inhibiting the decrease in occludin and vascular endothelial (VE)-cadherin. Moreover, in retinas with edema, arctigenin suppressed the induction of VEGF, tumor necrosis factor α (TNFα), and matrix metallopeptidase 9 (MMP9). Next, the effects of arctigenin on barrier function were assessed in human retinal microvascular endothelial cells (HRMECs) by measuring the trans-endothelial electrical resistance (TEER) and conducting fluorescein isothiocyanate (FITC)-dextran permeability assays. Arctigenin showed a protective effect against VEGF-induced barrier dysfunction. In addition, arctigenin inhibited the TNFα-mediated activation of the nuclear factor-kappaB (NF-κB)/p38 mitogen-activated protein kinase (MAPK) pathway. These results suggested that oral administration of arctigenin has beneficial effects on retinal edema by inhibiting vascular hyperpermeability in endothelial cells.


Assuntos
Retinopatia Diabética , Lignanas , Edema Macular , Papiledema , Oclusão da Veia Retiniana , Humanos , Animais , Camundongos , Células Endoteliais , Microcirculação , Fator de Necrose Tumoral alfa , Fator A de Crescimento do Endotélio Vascular
11.
J Endocrinol ; 257(3)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36988989

RESUMO

VGF nerve growth factor inducible (VGF) is a secreted polypeptide involved in metabolic regulation. VGF-derived peptides have been reported to regulate insulin secretion in the plasma of patients with type 2 diabetes and model mice. However, the protective effects of VGF on pancreatic ß-cells in diabetic model are not well understood. In this study, we aimed to elucidate the ß-cell protective effect of VGF on a streptozotocin (STZ)-induced diabetic model using VGF-overexpressing (OE) mice and also examined the therapeutic effect by a small molecule, SUN N8075 which is an inducer of VGF. VGF-OE mice improved blood glucose levels and maintained ß-cell mass compared to wild-type (WT) mice on STZ-induced diabetic model. In addition, VGF-OE mice showed better glucose tolerance than WT mice. In culture, AQEE-30, a VGF-derived peptide, suppressed STZ-induced ß-cell death in vitro and attenuated the decrease in the phosphorylation of Akt and GSK3ß. Furthermore, SUN N8075 suppressed the blood glucose levels and increased VGF expression in the pancreatic islet. SUN N8075 also protected STZ-induced ß-cell death in vitro. These findings indicate that VGF plays a hypoglycemic role in response to blood glucose levels in diabetes and protects ß-cells from STZ-induced cell death. Therefore, VGF and its inducer have the therapeutic potential by preserving ß-cells in diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Camundongos , Animais , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Compostos de Anilina/farmacologia , Piperazinas/metabolismo , Piperazinas/farmacologia , Estreptozocina , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo
12.
Exp Eye Res ; 228: 109405, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36773739

RESUMO

This study aimed to determine the role of transient receptor potential vanilloid 4 (TRPV4), a calcium (Ca2+)-permeable cation channel, in the pathophysiology of retinal vascular disease. The retinal vein occlusion (RVO) murine model was created by irradiating retinal veins using lasers. TRPV4 expression and localization were evaluated in RVO mice retinas. In addition, we examined the effects of TRPV4 antagonists (RQ-00317310, HC-067047, GSK2193874, and GSK2798745) on retinal edema, blood flow, and ischemic areas in RVO mice. Furthermore, changes in the retinal expression of tumor necrosis factor (TNF)-α and aquaporin4 (AQP4) by RQ-00317310 were analyzed using Western blot. We also assessed the barrier integrity of epithelial cell monolayers using trans-endothelial electrical resistance (TEER) in Human Retinal Microvascular Endothelial Cells (HRMECs). The expression of TRPV4 was significantly increased and co-localized with glutamine synthetase (GS), a Müller glial marker, in the ganglion cell layer (GCL) of the RVO mice. Moreover, RQ-00317310 administration ameliorated the development of retinal edema and ischemia in RVO mice. In addition, the up regulation of TNF-α and down-regulation of AQP4 were lessened by the treatment with RQ-00317310. Treatment with GSK1016790A, a TRPV4 agonist, increased vascular permeability, while RQ-00317310 treatment decreased vascular endothelial growth factor (VEGF)- or TRPV4-induced retinal vascular hyperpermeability in HRMECs. These findings suggest that TRPV4 plays a role in the development of retinal edema and ischemia. Thus, TRPV4 could be a new therapeutic target against the pathological symptoms of retinal vascular diseases.


Assuntos
Papiledema , Doenças Retinianas , Canais de Potencial de Receptor Transitório , Doenças Vasculares , Camundongos , Humanos , Animais , Permeabilidade Capilar , Canais de Cátion TRPV/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Canais de Potencial de Receptor Transitório/farmacologia , Células Endoteliais/metabolismo , Papiledema/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Doenças Retinianas/metabolismo , Doenças Vasculares/metabolismo
13.
Exp Eye Res ; 227: 109382, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36634838

RESUMO

Intraocular pressure (IOP) is the most important risk factor for the onset and progression of glaucoma. IOP reduction has been proven effective in the treatment of glaucoma. IOP is controlled by the production and outflow of the aqueous humor (AH), and the trabecular meshwork (TM) is the main pathway for AH drainage from the eye. However, there are few conventional IOP-lowering treatments that target TM, and there is a need for such treatments. In this study, we screened for the expression level of fibronectin as an indicator and identified an activin receptor-like kinase (ALK) 5 inhibitor. Western blot analysis showed that SB431542, an ALK 5 inhibitor, reduced fibronectin and α-SMA expression. Moreover, a single dose of the ALK5 inhibitor SB431542 reduced IOP in mice, and the IOP-lowering effect of the ALK5 inhibitor was greater than that of a Rho-associated coiled-coil-containing protein kinase inhibitor (Y-27632). Repeated dosing with ALK5 inhibitor eye drops (once daily) enhanced the murine IOP-lowering effect. Furthermore, ALK5 inhibition decreased the expression of extracellular matrix (ECM) mRNA and suppressed ECM production. These findings suggest that ALK5 inhibitors may contribute to the development of new treatments for glaucoma that target the TM.


Assuntos
Glaucoma , Malha Trabecular , Camundongos , Animais , Malha Trabecular/metabolismo , Pressão Intraocular , Fibronectinas/metabolismo , Humor Aquoso/metabolismo , Glaucoma/tratamento farmacológico , Glaucoma/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo
14.
J Control Release ; 353: 216-228, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36410615

RESUMO

The production of reactive oxygen species (ROS) during and after the onset of an ischemic stroke induces neuronal cell death and severely damages brain function. Therefore, reducing ROS by administrating antioxidant compounds is a promising approach to improving ischemic symptoms. Alpha-mangostin (α-M) is an antioxidant compound extracted from the pericarp of the mangosteen fruit. Reportedly, α-M decreases neuronal toxicity in primary rat cerebral cortical neurons. In this study, we investigated the neuroprotective activity of α-M in both in vitro and in vivo assays. Pretreatment with α-M inhibited excessive cellular ROS production after oxygen-glucose deprivation/reoxygenation (OGD/R) in vitro using an SH-SY5Y (human neuroblastoma) cell line. In addition, α-M maintained mitochondrial membrane potential and suppressed mitochondrial-specific ROS production induced by OGD/R. Meanwhile, the low bioavailability of α-M due to its poor water solubility has been an insuperable obstruction impeding extensive investigations of the biological functions of α-M and its medical applications. To overcome this problem, we synthesized a cyclodextrin-based nanoparticle (CDNP) that is known to increase the loading efficiency and binding constant of α-M, compared with cyclodextrins themselves. This nano-formulated α-M (α-M/CDNP) was optimized for an in vivo ischemic stroke model. Our results indicated that α-M/CDNP (25 mg/kg/injection) reduced infarct volume and improved neurological behavior (p = 0.036 and p = 0.046, respectively). These in vivo results suggest that α-M appears to cross the blood-brain barrier (BBB) with the help of a nano-formulation with CDNP. Combining an in vitro BBB model and a physicochemical binding assay between α-M and albumin, it is speculated that α-M released from CDNP would interact with albumin during its prolonged circulation in the blood, and the resultant α-M/albumin complex may cross the BBB through the absorptive-mediated transcytosis pathway. These findings suggest the potential clinical application of α-M in ischemic stroke treatment.


Assuntos
Isquemia Encefálica , Ciclodextrinas , AVC Isquêmico , Neuroblastoma , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Ratos , Humanos , Animais , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Oxigênio/uso terapêutico , Glucose/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Traumatismo por Reperfusão/metabolismo , Apoptose
15.
Cell Mol Neurobiol ; 43(2): 879-892, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35435536

RESUMO

Sodium-glucose transporter 2 (SGLT2) inhibitors are antidiabetic drugs affecting SGLT2. Recent studies have shown various cancers expressing SGLT2, and SGLT2 inhibitors attenuating tumor proliferation. We evaluated the antitumor activities of canagliflozin, a SGLT2 inhibitor, on glioblastoma (GBM). Three GBM cell lines, U251MG (human), U87MG (human), and GL261 (murine), were used. We assessed the expression of SGLT2 of GBM through immunoblotting, specimen-use, cell viability assays, and glucose uptake assay with canagliflozin. Then, we assessed phosphorylation of AMP-activated protein kinase (AMPK), p70 S6 kinase, and S6 ribosomal protein by immunoblotting. Concentrations of 5, 10, 20, and 40 µM canagliflozin were used in these tests. We also evaluated cell viability and immunoblotting using U251MG with siRNA knockdown of SGLT2. Furthermore, we divided the mice into vehicle group and canagliflozin group. The canagliflozin group was administrated with 100 mg/kg of canagliflozin orally for 10 days starting from the third days post-GBM transplant. The brains were removed and the tumor volume was evaluated using sections. SGLT2 was expressed in GBM cell and GBM allograft mouse. Canagliflozin administration at 40 µM significantly inhibited cell proliferation and glucose uptake into the cell. Additionally, canagliflozin at 40 µM significantly increased the phosphorylation of AMPK and suppressed that of p70 S6 kinase and S6 ribosomal protein. Similar results of cell viability assays and immunoblotting were obtained using siRNA SGLT2. Furthermore, although less effective than in vitro, the canagliflozin group significantly suppressed tumor growth in GBM-transplanted mice. This suggests that canagliflozin can be used as a potential treatment for GBM.


Assuntos
Glioblastoma , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Camundongos , Animais , Canagliflozina/farmacologia , Canagliflozina/uso terapêutico , Proteínas Quinases Ativadas por AMP/metabolismo , Glioblastoma/tratamento farmacológico , Transportador 2 de Glucose-Sódio/genética , Transportador 2 de Glucose-Sódio/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Proliferação de Células , Glucose/metabolismo , Proteínas Ribossômicas/metabolismo
16.
Mol Vis ; 29: 188-196, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38222457

RESUMO

Purpose: To investigate the therapeutic effects of eye drops, namely, timolol maleate, a ß-adrenergic receptor antagonist, and latanoprost, a prostaglandin F2α analog, on retinal edema in a murine retinal vein occlusion (RVO) model. Methods: An RVO model was established using laser-induced RVO in mice, which were administered timolol maleate and latanoprost eye drops several times after venous occlusion. Subsequently, the thickness of the inner nuclear layer (INL) and the expression levels of such genes as Vegf and Atf4, which are stress markers of the endoplasmic reticulum, were examined. Primary human cultured retinal microvascular endothelial cells (HRMECs) were treated with timolol under hypoxic conditions, after which the gene expression pattern was investigated. Importantly, an integrated stress response inhibitor (ISRIB) was used in the RVO model, he known ISRIB, which suppresses the expression of ATF4 in retinal edema. Results: Increased INL thickness was suppressed by timolol eye drops, as were the expressions of Vegf and Atf4, in the RVO model. However, latanoprost eye drops did not induce any change in INL thickness. In HRMECs, hypoxic stress and serum deprivation increased the Vegf and Atf4 expressions; in response, treatment with timolol suppressed the Vegf expression. Furthermore, the ISRIB decreased the Vegf expression pattern and edema formation, which are associated with RVO. Conclusions: These results indicate that timolol eye drops may be a potential option for RVO treatment.


Assuntos
Papiledema , Oclusão da Veia Retiniana , Masculino , Humanos , Camundongos , Animais , Timolol/farmacologia , Timolol/uso terapêutico , Timolol/metabolismo , Oclusão da Veia Retiniana/complicações , Oclusão da Veia Retiniana/tratamento farmacológico , Oclusão da Veia Retiniana/metabolismo , Soluções Oftálmicas/uso terapêutico , Latanoprosta/farmacologia , Latanoprosta/metabolismo , Latanoprosta/uso terapêutico , Papiledema/tratamento farmacológico , Células Endoteliais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Edema/complicações
17.
J Pharmacol Sci ; 150(4): 279-288, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36344051

RESUMO

The corneal epithelium is located at the outermost layer of the ocular surface and continuously exposed to environmental factors, such as ultraviolet (UV) radiation from sunlight. UV irradiation causes excessive production of reactive oxygen species (ROS) in cells, which results in oxidative damage to membrane-bound organelles such as mitochondria, eventually leading to cell death. Crocetin, a natural carotenoid found in plants, has various biological properties including antioxidant activity. In this study, we investigated the effects of crocetin on UV-A-induced cell injury in the corneal epithelium. Using an in vitro system with the human corneal epithelial cell-transformed (HCE-T) cell line, pretreatment with 10 µM crocetin suppressed the reduction of cell viability induced by UV-A exposure. Crocetin ameliorated the decrease in oxygen consumption rates and the mitochondrial fragmentation that occurred following UV-A irradiation. Crocetin inhibited both ROS production and the activation of the apoptosis pathway; it also preserved the defects of epithelial cell polarity and barrier function in UV-A-irradiated HCE-T cells. The reduction in apical Mucin-16 expression was partially recovered in the presence of crocetin. Taking these findings together, we conclude that crocetin has a protective effect against UV-A irradiation-induced mitochondrial injury in corneal epithelial cells.


Assuntos
Células Epiteliais , Raios Ultravioleta , Humanos , Espécies Reativas de Oxigênio/metabolismo , Raios Ultravioleta/efeitos adversos , Células Epiteliais/metabolismo , Estresse Oxidativo , Linfócitos T/metabolismo
18.
J Neurooncol ; 160(2): 375-388, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36308592

RESUMO

PURPOSE: The alkylating agent temozolomide (TMZ) has a significant impact on the prognosis of glioblastoma (GBM) patients. Therefore, maximizing TMZ efficacy is important for GBM treatment. Many reports have shown that glutamate signaling promotes GBM progression via glutamate receptors, including N-methyl-D-aspartate receptors (NMDARs). Although NMDARs promote cell migration and invasion of GBM cells, their role in TMZ resistance remains unclear. Therefore, we focused on NMDAR signaling and investigated its effects on TMZ resistance. METHODS: We investigated the effect of NMDAR signaling on O6-methylguanine DNA methyltransferase (MGMT), a DNA repair enzyme that induces chemoresistance to TMZ, using quantitative real-time polymerase chain reaction and western blotting in human GBM T98G cells. In addition, we used memantine (MEM), an NMDAR antagonist, to investigate the cytotoxic effect of TMZ/MEM combination and its detailed mechanism. RESULTS: Activation of NMDAR by N-methyl-D-aspartate (NMDA) elevated MGMT expression and suppressed the effect of TMZ in T98G cells. In contrast, knockdown of NMDAR by NMDAR1 shRNA decreased MGMT expression and enhanced the effect of TMZ in T98G cells. The cytotoxic effect of TMZ was enhanced by MEM in T98G cells. Inhibition of NMDAR by MEM decreased MGMT expression and increased DNA alkylation by TMZ. CONCLUSION: NMDAR signaling induced chemoresistance of TMZ via the upregulation of MGMT expression in GBM cells. Furthermore, MEM inhibited TMZ-induced MGMT upregulation and increased the cytotoxic effect of TMZ on MGMT-positive cells. This study demonstrates that the combination of TMZ and MEM could be a new therapeutic strategy for MGMT-positive GBM. Overview of this study. NMDAR signaling controls the expression of MGMT and the cytotoxic effect of TMZ.


Assuntos
Antineoplásicos , Glioblastoma , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Regulação para Cima , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Metilases de Modificação do DNA/metabolismo , O(6)-Metilguanina-DNA Metiltransferase/genética , Enzimas Reparadoras do DNA/metabolismo , Antineoplásicos/uso terapêutico , DNA/farmacologia , DNA/uso terapêutico , Linhagem Celular Tumoral , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
19.
Invest Ophthalmol Vis Sci ; 63(8): 14, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35822950

RESUMO

Purpose: Semaphorin 3A (Sema3A) is a promising therapeutic target for macular edema in age-related macular degeneration, diabetic retinopathy, and retinal vein occlusion (RVO). Anti-vascular endothelial growth factors (anti-VEGFs) are the current standard of care for many retinal diseases. This study investigated the Sema3A neutralizing antibody BI-X and/or anti-VEGF therapy (aflibercept) in an RVO mouse model. Treatment efficacy was examined and grouped by timing subsequent to the RVO mouse model induction: efficacy against the onset of intraretinal edema 1 day postinduction and protective effects at 7 days postinduction. Methods: We examined the changes in expression of Sema3A in the retina of an RVO mouse model. In addition, changes in expression of tumor necrosis factor (TNF)-α and semaphorin-related proteins (neuropilin-1 and plexin A1) in the retina upon treatment were analyzed by Western blotting. The effects of BI-X and/or aflibercept were evaluated using measures of retinal edema, blood flow, and thinning of the inner nuclear layer. Results: Induction of vein occlusion in the RVO mouse model significantly increased Sema3A expression in the retina, particularly in the inner nuclear layer. BI-X was effective as a monotherapy and in combination with anti-VEGF therapy, demonstrating a beneficial effect on intraretinal edema and retinal blood flow. Moreover, in the RVO mouse model, BI-X monotherapy normalized the changes in expression of TNF-α and semaphorin-related proteins. Conclusions: These findings support targeting Sema3A to treat intraretinal edema and retinal ischemia.


Assuntos
Edema Macular , Doenças Retinianas , Oclusão da Veia Retiniana , Inibidores da Angiogênese/uso terapêutico , Animais , Anticorpos Neutralizantes/farmacologia , Anticorpos Neutralizantes/uso terapêutico , Modelos Animais de Doenças , Injeções Intravítreas , Edema Macular/tratamento farmacológico , Masculino , Camundongos , Retina/patologia , Doenças Retinianas/patologia , Oclusão da Veia Retiniana/metabolismo , Semaforina-3A/metabolismo
20.
Exp Brain Res ; 240(7-8): 2051-2060, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35587282

RESUMO

VGF nerve growth factor inducible (VGF) is a neuropeptide precursor, which is induced by several neurotrophic factors, including nerve growth factor and brain-derived neurotrophic factor. Clinically, an upregulation of VGF levels has been reported in the cerebrospinal fluid and prefrontal cortex of patients with schizophrenia. In our previous study, mice overexpressing VGF exhibited schizophrenia-related behaviors. In the current study, we characterized the biochemical changes in the brains of VGF-overexpressing mice. Metabolomics analysis of neurotransmitters revealed that glutamic acid and N-acetyl-L-aspartic acid were increased in the striatum of VGF-overexpressing mice. Additionally, the present study revealed that MK-801, which causes the disturbance in glutamic acid metabolism, increased the expression level of VGF-derived peptide (NAPP129, named VGF20), and VGF-overexpressing mice had higher sensitivity to MK-801. These results suggest that VGF may modulate the regulation of glutamic acid levels and the degree of glutamic acid signaling.


Assuntos
Maleato de Dizocilpina , Esquizofrenia , Animais , Maleato de Dizocilpina/farmacologia , Ácido Glutâmico , Camundongos , Fenótipo , Córtex Pré-Frontal/metabolismo , Esquizofrenia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...