Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bone ; 150: 116010, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34020080

RESUMO

Severe dental tissue damage induces odontoblast death, after which dental pulp stem and progenitor cells (DPSCs) differentiate into odontoblast-like cells, contributing to reparative dentin. However, the damage-induced mechanism that triggers this regeneration process is still not clear. We aimed to understand the effect of odontoblast death without hard tissue damage on dental regeneration. Herein, using a Cre/LoxP-based strategy, we demonstrated that cell-rich zone (CZ)-localizing Nestin-GFP-positive and Nestin-GFP-negative cells proliferate and differentiate into odontoblast-like cells in response to odontoblast depletion. The regenerated odontoblast-like cells played a role in reparative dentin formation. RNA-sequencing analysis revealed that the expression of odontoblast differentiation- and activation-related genes was upregulated in the pulp in response to odontoblast depletion even without damage to dental tissue. In this regenerative process, the expression of type I parathyroid hormone receptor (PTH1R) increased in the odontoblast-depleted pulp, thereby boosting dentin formation. The levels of PTH1R and its downstream mediator, i.e., phosphorylated cyclic AMP response element-binding protein (Ser133) increased in the physically damaged pulp. Collectively, odontoblast death triggered the PTH1R cascade, which may represent a therapeutic target for inducing CZ-mediated dental regeneration.


Assuntos
Dentina , Odontoblastos , Diferenciação Celular , Polpa Dentária , Células-Tronco , Cicatrização
2.
J Oral Biosci ; 63(2): 199-209, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33845204

RESUMO

OBJECTIVE: Wnt signaling has been reported to be involved in dentin bridge formation. However, the detailed mechanism has not yet been clarified. We elucidated the localization of canonical Wnt signaling molecules during dentin bridge formation. METHODS: Pulp of the maxillary first molar in mice was exposed and directly capped with MTA cement. Maxillae were collected on the 1st, 4th, 7th, 14th, and 28th days after treatment. After µCT analysis, immunohistochemistry for Wnt3a, Wnt10a, ß-catenin, F4/80, and osterix was performed in paraffin-embedded sections. RESULTS: On the 4th and 7th days after pulp capping, odontoblasts and dental pulp cells expressed Wnt3a, Wnt10a, and ß-catenin. On the 14th day, reactionary dentin was formed around the pulp exposure area. Odontoblasts and dental pulp cells express Wnt3a, Wnt10a, and ß-catenin. Additionally, F4/80- and Wnt10a-positive macrophages were observed at the center of the dental pulp. When the dentin bridge was formed on the 28th day, reparative odontoblasts expressed Wnt3a, ß-catenin and osterix. CONCLUSION: Wnt ligands derived from odontoblasts and dental pulp cells are important for the activation of odontoblasts and the differentiation of reparative odontoblasts during dentin bridge formation. Macrophage-derived Wnts are also involved in reparative odontoblast differentiation.


Assuntos
Dentina , Via de Sinalização Wnt , Animais , Diferenciação Celular , Capeamento da Polpa Dentária , Camundongos , Odontoblastos
3.
J Bone Miner Metab ; 39(4): 558-571, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33721112

RESUMO

INTRODUCTION: Bone metabolism imbalances cause bone metabolism diseases, like osteoporosis, through aging. Although some chemokines are known to be involved in bone mass regulation, many have not been investigated. Thus, the present study aimed to investigate the role of chemokine ligand 28 (CCL28) on bone metabolism. MATERIALS AND METHODS: To investigate the role of CCL28 on bone metabolism, 10-week-old male wild-type and Ccl28 knockout (Ccl28 KO) mice were analyzed. Microcomputed tomography analysis and bone tissue morphometry were used to investigate the effect of Ccl28 deficiency on the bone. CCL28 localization in bone tissue was assumed by immunohistochemistry. Osteoblast and osteoclast markers were evaluated by enzyme-linked immunosorbent assay and quantitative reverse transcription-polymerase chain reaction. Finally, in vitro experiments using MC3T3-E1 and bone marrow macrophages revealed the direct effect of CCL28 on osteoblast and osteoclast. RESULTS: This study showed that Ccl28 deficiency significantly increased bone mass and the number of mature osteoblasts. Immunoreactivity for CCL28 was observed in osteoblasts and osteoclasts on bone tissue. Additionally, Ccl28 deficiency promoted osteoblast and osteoclast maturation. Moreover, CCL28 treatment decreased osteoblast and osteoclast activities but did not affect differentiation. CONCLUSION: In summary, this study indicated that CCL28 is one of the negative regulators of bone mass by suppressing osteoblast and osteoclast activities. These results provide important insights into bone immunology and the selection of new osteoporosis treatments.


Assuntos
Osso Esponjoso/anatomia & histologia , Quimiocinas CC/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Animais , Biomarcadores/sangue , Densidade Óssea , Osso Esponjoso/metabolismo , Quimiocinas CC/deficiência , Fator de Crescimento Insulin-Like I/metabolismo , Ligantes , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tamanho do Órgão , Osteogênese , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Tíbia/anatomia & histologia
4.
Arch Oral Biol ; 123: 105042, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33482540

RESUMO

OBJECTIVE: Macrophages are involved in tissue inflammation and repair through cytokine secretion. However, the contribution of macrophages to healing and osteogenesis after tooth extraction remains unclear. Therefore, we investigated the distribution of osteoblastic cells and macrophages in the early healing process after tooth extraction. METHODS: The maxillary first molars of 6-week-old male mice were extracted. The maxilla was collected 1, 3, and 7 days after extraction. The states of socket healing, localization of osteoblastic markers, and macrophage infiltration were sequentially observed by micro-CT imaging and immunohistochemistry. RESULTS: On day 3 after tooth extraction, α-smooth muscle actin (SMA)-positive cells, osteoprogenitor cells at fracture healing, were observed in the socket. Several α-SMA-positive cells also expressed Runx2, the early osteoblast differentiation marker. The infiltration of F4/80-positive, mature macrophages and CD206-positive, M2-like macrophages was noted in the socket. However, CD169-positive macrophages (Osteomac), which are involved in fracture healing, were not detected in the socket. F4/80-positive and CD206-positive macrophages also showed the localization of transforming growth factor-ß (TGF-ß), which promotes osteoprogenitor cell proliferation and early differentiation. Phosphorylated Smad3, a downstream mediator of the signal activity of TGF-ß, was detected in α-SMA-positive cells. On day 7, the extracted socket contained a large amount of new bone. Tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts were detected on bone surfaces. CONCLUSION: Our data indicate that M2-like macrophages regulate the proliferation and differentiation of α-SMA-positive cells by secreting TGF-ß at the early stage of socket healing, and also suggest the importance of macrophages in healing and bone formation after tooth extraction.


Assuntos
Macrófagos/citologia , Extração Dentária , Alvéolo Dental , Fator de Crescimento Transformador beta/metabolismo , Cicatrização , Animais , Masculino , Camundongos , Osteogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...