Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3657, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719795

RESUMO

Cell states are regulated by the response of signaling pathways to receptor ligand-binding and intercellular interactions. High-resolution imaging has been attempted to explore the dynamics of these processes and, recently, multiplexed imaging has profiled cell states by achieving a comprehensive acquisition of spatial protein information from cells. However, the specificity of antibodies is still compromised when visualizing activated signals. Here, we develop Precise Emission Canceling Antibodies (PECAbs) that have cleavable fluorescent labeling. PECAbs enable high-specificity sequential imaging using hundreds of antibodies, allowing for reconstruction of the spatiotemporal dynamics of signaling pathways. Additionally, combining this approach with seq-smFISH can effectively classify cells and identify their signal activation states in human tissue. Overall, the PECAb system can serve as a comprehensive platform for analyzing complex cell processes.


Assuntos
Imunofluorescência , Humanos , Imunofluorescência/métodos , Transdução de Sinais , Anticorpos/imunologia , Animais , Hibridização in Situ Fluorescente/métodos , Microscopia de Fluorescência/métodos , Corantes Fluorescentes/química , Imagem Individual de Molécula/métodos
3.
Monoclon Antib Immunodiagn Immunother ; 43(2): 75-80, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38502827

RESUMO

H2b3b is one of the histone H2b isoforms that differs from canonical H2b by five to six amino acids. Previously, we identified H3t as the testis-specific histone H3 variant located in histone cluster 3, which is also the site of H2b3b. In this study, we produced monoclonal antibodies against H2b3b, using the iliac rat lymph node method for rat antibody and the immunochamber method for rabbit antibody. Immunoblot analysis confirmed that our antibodies could specifically discriminate between H2b3b and canonical H2b. Moreover, immunostaining revealed colocalization with a testicular stem cell marker, Plzf, but not with a meiotic marker, Sycp. This indicated that H2b3b is expressed in spermatogenic cells before meiosis. Our monoclonal antibodies enable further studies to reveal specific functions of H2b3b during spermatogenesis. We also hope that the established method will lead to the production of antibodies that can identify other H2b isoforms.


Assuntos
Anticorpos Monoclonais , Histonas , Masculino , Coelhos , Ratos , Animais , Histonas/análise , Histonas/química , Histonas/metabolismo , Testículo/química , Testículo/metabolismo , Espermatogênese , Isoformas de Proteínas/metabolismo
5.
Cell Rep ; 42(5): 112530, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37209098

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a chronic metabolic disorder caused by overnutrition and can lead to nonalcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC). The transcription factor Forkhead box K1 (FOXK1) is implicated in regulation of lipid metabolism downstream of mechanistic target of rapamycin complex 1 (mTORC1), but its role in NAFLD-NASH pathogenesis is understudied. Here, we show that FOXK1 mediates nutrient-dependent suppression of lipid catabolism in the liver. Hepatocyte-specific deletion of Foxk1 in mice fed a NASH-inducing diet ameliorates not only hepatic steatosis but also associated inflammation, fibrosis, and tumorigenesis, resulting in improved survival. Genome-wide transcriptomic and chromatin immunoprecipitation analyses identify several lipid metabolism-related genes, including Ppara, as direct targets of FOXK1 in the liver. Our results suggest that FOXK1 plays a key role in the regulation of hepatic lipid metabolism and that its inhibition is a promising therapeutic strategy for NAFLD-NASH, as well as for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Carcinoma Hepatocelular/metabolismo , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Neoplasias Hepáticas/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo
6.
STAR Protoc ; 3(2): 101346, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35496796

RESUMO

Photo-isolation chemistry (PIC) enables isolation of transcriptome information from locally defined areas by photo-irradiation. Here, we present an optimized PIC protocol for formalin-fixed frozen and paraffin mouse sections and fresh-frozen mouse sections. We describe tissue section preparation and permeabilization, followed by in situ reverse transcription using photo-caged primers. We then detail immunostaining and UV-mediated uncaging to the target areas, followed by linear amplification of uncaged cDNAs, library preparation, and quantification. This protocol can be applied to various animal tissue types. For complete details on the use and execution of this protocol, please refer to Honda et al. (2021).


Assuntos
Formaldeído , Transcriptoma , Animais , DNA Complementar , Secções Congeladas/métodos , Biblioteca Gênica , Camundongos
7.
PLoS One ; 17(3): e0265008, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35271636

RESUMO

The precursor of heme, protoporphyrin IX (PPIX), accumulates abundantly in the uteri of birds, such as Japanese quail, Coturnix japonica, which has brown-speckled eggshells; however, the molecular basis of PPIX production in the uterus remains largely unknown. Here, we investigated the cause of low PPIX production in a classical Japanese quail mutant exhibiting white eggshells by comparing its gene expression in the uterus with that of the wild type using transcriptome analysis. We also performed genetic linkage analysis to identify the causative genomic region of the white eggshell phenotype. We found that 11 genes, including 5'-aminolevulinate synthase 1 (ALAS1) and hephaestin-like 1 (HEPHL1), were specifically upregulated in the wild-type uterus and downregulated in the mutant. We mapped the 172 kb candidate genomic region on chromosome 6, which contains several genes, including a part of the paired-like homeodomain 3 (PITX3), which encodes a transcription factor. ALAS1, HEPHL1, and PITX3 were expressed in the apical cells of the luminal epithelium and lamina propria cells of the uterine mucosa of the wild-type quail, while their expression levels were downregulated in the cells of the mutant quail. Biochemical analysis using uterine homogenates indicated that the restricted availability of 5'-aminolevulinic acid is the main cause of low PPIX production. These results suggest that uterus-specific transcriptional regulation of heme-biosynthesis-related genes is an evolutionarily acquired mechanism of eggshell pigment production in Japanese quail. Based on these findings, we discussed the molecular basis of PPIX production in the uteri of Japanese quails.


Assuntos
Coturnix , Casca de Ovo , Ácido Aminolevulínico , Animais , Coturnix/genética , Casca de Ovo/fisiologia , Ovos , Feminino , Heme/metabolismo , Codorniz/metabolismo , Coelhos , Útero/metabolismo
8.
Mol Syst Biol ; 17(11): e10323, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34730297

RESUMO

Recent advances in genome-wide technologies have enabled analyses using small cell numbers of even single cells. However, obtaining tissue epigenomes with cell-type resolution from large organs and tissues still remains challenging, especially when the available material is limited. Here, we present a ChIL-based approach for analyzing the diverse cellular dynamics at the tissue level using high-depth epigenomic data. "ChIL for tissues" allows the analysis of a single tissue section and can reproducibly generate epigenomic profiles from several tissue types, based on the distribution of target epigenomic states, tissue morphology, and number of cells. The proposed method enabled the independent evaluation of changes in cell populations and gene activation in cells from regenerating skeletal muscle tissues, using a statistical model of RNA polymerase II distribution on gene loci. Thus, the integrative analyses performed using ChIL can elucidate in vivo cell-type dynamics of tissues.


Assuntos
Epigenoma , Epigenômica , Genoma , Densidade Demográfica
9.
Curr Opin Struct Biol ; 71: 116-122, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34303078

RESUMO

The analysis of gene expression regulation, or the epigenome analysis, at the single-cell level is at the forefront of genomics research. To elucidate the mechanisms that regulate gene expression, chromatin immunoprecipitation has been conventionally used for determining the binding sites of DNA-binding proteins, such as histones and transcription factors. Now several new approaches have been emerged to reveal epigenome states at the single-cell level. Instead of using immunoprecipitation of fragmented chromatin, in situ reactions using cells or nuclei, combining with transposase tagging and other methods, have enabled single-cell analysis. Furthermore, single-cell multiomics techniques to simultaneously profiling transcriptome and open chromatin or histone modification have been developed. These single-cell analyses have the potential to identify different cell types in a cell population and reveal the dynamic changes of gene regulation, although those technologies have not yet reached a level for general application.


Assuntos
Cromatina , Epigenômica , Cromatina/genética , Imunoprecipitação da Cromatina , Genômica , Histonas/genética
10.
Nat Commun ; 12(1): 4416, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34285220

RESUMO

In multicellular organisms, expression profiling in spatially defined regions is crucial to elucidate cell interactions and functions. Here, we establish a transcriptome profiling method coupled with photo-isolation chemistry (PIC) that allows the determination of expression profiles specifically from photo-irradiated regions of interest. PIC uses photo-caged oligodeoxynucleotides for in situ reverse transcription. PIC transcriptome analysis detects genes specifically expressed in small distinct areas of the mouse embryo. Photo-irradiation of single cells demonstrated that approximately 8,000 genes were detected with 7 × 104 unique read counts. Furthermore, PIC transcriptome analysis is applicable to the subcellular and subnuclear microstructures (stress granules and nuclear speckles, respectively), where hundreds of genes can be detected as being specifically localised. The spatial density of the read counts is higher than 100 per square micrometre. Thus, PIC enables high-depth transcriptome profiles to be determined from limited regions up to subcellular and subnuclear resolutions.


Assuntos
Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Análise Espacial , Transcriptoma/genética , Animais , Encéfalo/crescimento & desenvolvimento , Embrião de Mamíferos , Estudos de Viabilidade , Técnicas Genéticas , Células HeLa , Humanos , Masculino , Camundongos , Células NIH 3T3 , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/genética , Oligodesoxirribonucleotídeos/efeitos da radiação , Transcrição Reversa/efeitos da radiação , Transcriptoma/efeitos da radiação , Raios Ultravioleta
11.
Genes Cells ; 26(7): 530-540, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33987903

RESUMO

Single-cell RNA-sequencing analysis is one of the most effective tools for understanding specific cellular states. The use of single cells or pooled cells in RNA-seq analysis requires the isolation of cells from a tissue or culture. Although trypsin or more recently cold-active protease (CAP) has been used for cell dissociation, the extent to which the gene expression changes are suppressed has not been clarified. To this end, we conducted detailed profiling of the enzyme-dependent gene expression changes in mouse skeletal muscle progenitor cells, focusing on the enzyme treatment time, amount and temperature. We found that the genes whose expression was changed by the enzyme treatment could be classified in a time-dependent manner and that there were genes whose expression was changed independently of the enzyme treatment time, amount and temperature. This study will be useful as reference data for genes that should be excluded or considered for RNA-seq analysis using enzyme isolation methods.


Assuntos
Mioblastos/metabolismo , RNA-Seq/métodos , Transcriptoma , Animais , Linhagem Celular , Camundongos , Mioblastos/efeitos dos fármacos , Células NIH 3T3 , RNA-Seq/normas , Tripsina/farmacologia
12.
Elife ; 102021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33970102

RESUMO

In eukaryotes, histone variant distribution within the genome is the key epigenetic feature. To understand how each histone variant is targeted to the genome, we developed a new method, the RhIP (Reconstituted histone complex Incorporation into chromatin of Permeabilized cell) assay, in which epitope-tagged histone complexes are introduced into permeabilized cells and incorporated into their chromatin. Using this method, we found that H3.1 and H3.3 were incorporated into chromatin in replication-dependent and -independent manners, respectively. We further found that the incorporation of histones H2A and H2A.Z mainly occurred at less condensed chromatin (open), suggesting that condensed chromatin (closed) is a barrier for histone incorporation. To overcome this barrier, H2A, but not H2A.Z, uses a replication-coupled deposition mechanism. Our study revealed that the combination of chromatin structure and DNA replication dictates the differential histone deposition to maintain the epigenetic chromatin states.


Assuntos
Cromatina/metabolismo , Histonas/metabolismo , Nucleossomos/metabolismo , Linhagem Celular Tumoral , Cromatina/genética , Montagem e Desmontagem da Cromatina , Genoma , Células HeLa , Humanos
13.
J Allergy Clin Immunol ; 148(2): 633-638, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33819507

RESUMO

BACKGROUND: IL-31 is a major pruritogen associated with atopic dermatitis (AD). Although a specific antibody for IL-31 receptor has been shown to alleviate pruritus in patients with AD, therapeutic approaches to inhibition of IL-31 production remain unexploited. IL-31 production by TH cells critically depends on the transcription factor EPAS1, which mediates IL31 promoter activation in collaboration with SP1. OBJECTIVE: We aimed at developing small-molecule inhibitors that selectively block IL-31 production by TH cells. METHODS: We generated the reporter cell line that inducibly expressed EPAS1 in the presence of doxycycline to mediate Il31 promoter activation, and we screened 9600 chemical compounds. The selected compounds were further examined by using TH cells from a spontaneous mouse model of AD and TH cells from patients with AD. RESULTS: We have identified 4-(2-(4-isopropylbenzylidene)hydrazineyl)benzoic acid (IPHBA) as an inhibitor of IL31 induction. Although IPHBA did not affect nonspecific T-cell proliferation, IPHBA inhibited antigen-induced IL-31 production by TH cells from both an AD mouse model and patients with AD without affecting other cytokine production and hypoxic responses. In line with this, itch responses induced by adoptive transfer of IL-31-producing TH cells were attenuated when mice were orally treated with IPHBA. Mechanistically, IPHBA inhibited the association between EPAS1 and SP1, resulting in defective recruitment of both transcription factors to the specific sites of the IL31 promoter. We also determined the structure-activity relationship of IPHBA by synthesizing and analyzing 201 analogous compounds. CONCLUSION: IPHBA could be a potential drug leading to inhibition of EPAS1-driven IL-31 production.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Dermatite Atópica/imunologia , Doxiciclina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Interleucinas/imunologia , Transdução de Sinais/efeitos dos fármacos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Dermatite Atópica/genética , Dermatite Atópica/patologia , Regulação da Expressão Gênica/imunologia , Interleucinas/genética , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Linfócitos T Auxiliares-Indutores
14.
J Biochem ; 169(6): 653-661, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-33479729

RESUMO

MyoD, a myogenic differentiation protein, has been studied for its critical role in skeletal muscle differentiation. MyoD-expressing myoblasts have a potency to be differentiated with proliferation of ectopic cells. However, little is known about the effect on chromatin structure of MyoD binding in proliferative myoblasts. In this study, we evaluated the chromatin structure around MyoD-bound genome regions during the cell cycle by chromatin immunoprecipitation sequencing. Genome-wide analysis of histone modifications was performed in proliferative mouse C2C12 myoblasts during three phases (G1, S, G2/M) of the cell cycle. We found that MyoD-bound genome regions had elevated levels of active histone modifications, such as H3K4me1/2/3 and H3K27ac, compared with MyoD-unbound genome regions during the cell cycle. We also demonstrated that the elevated H3K4me2/3 modification level was maintained during the cell cycle, whereas the H3K27ac and H3K4me1 modification levels decreased to the same level as MyoD-unbound genome regions during the later phases. Immunoblot analysis revealed that MyoD abundance was high in the G1 phase then decreased in the S and G2/M phases. Our results suggest that MyoD binding formed selective epigenetic memories with H3K4me2/3 during the cell cycle in addition to myogenic gene induction via active chromatin formation coupled with transcription.


Assuntos
Ciclo Celular , Proliferação de Células , Cromatina/química , Genoma , Músculo Esquelético/fisiologia , Proteína MyoD/metabolismo , Mioblastos/fisiologia , Animais , Diferenciação Celular , Cromatina/genética , Cromatina/metabolismo , Camundongos , Desenvolvimento Muscular , Músculo Esquelético/citologia , Proteína MyoD/genética , Mioblastos/citologia , Ligação Proteica
15.
Nat Commun ; 11(1): 5914, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33219233

RESUMO

The nuclear lamina plays an important role in the regulation of chromatin organization and gene positioning in animals. CROWDED NUCLEI (CRWN) is a strong candidate for the plant nuclear lamina protein in Arabidopsis thaliana but its biological function was largely unknown. Here, we show that CRWNs localize at the nuclear lamina and build the meshwork structure. Fluorescence in situ hybridization and RNA-seq analyses revealed that CRWNs regulate chromatin distribution and gene expression. More than 2000 differentially expressed genes were identified in the crwn1crwn4 double mutant. Copper-associated (CA) genes that form a gene cluster on chromosome 5 were among the downregulated genes in the double mutant exhibiting low tolerance to excess copper. Our analyses showed this low tolerance to copper was associated with the suppression of CA gene expression and that CRWN1 interacts with the CA gene locus, enabling the locus to localize at the nuclear lamina under excess copper conditions.


Assuntos
Proteínas de Arabidopsis , Cobre/metabolismo , Lâmina Nuclear , Proteínas Nucleares , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Cromatina/metabolismo , Regulação da Expressão Gênica de Plantas , Hibridização in Situ Fluorescente , Mutação/genética , Lâmina Nuclear/genética , Lâmina Nuclear/metabolismo , Lâmina Nuclear/ultraestrutura , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA-Seq
16.
Nat Protoc ; 15(10): 3334-3360, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32807906

RESUMO

Cell identity is determined by the selective activation or silencing of specific genes via transcription factor binding and epigenetic modifications on the genome. Chromatin immunoprecipitation (ChIP) has been the standard technique for mapping the sites of transcription factor binding and histone modification. Recently, alternative methods to ChIP have been developed for addressing the increasing demands for low-input epigenomic profiling. Chromatin integration labeling (ChIL) followed by sequencing (ChIL-seq) has been demonstrated to be particularly useful for epigenomic profiling of low-input samples or even single cells because the technique amplifies the target genomic sequence before cell lysis. After labeling the target protein or modification in situ with an oligonucleotide-conjugated antibody (ChIL probe), the nearby genome sequence is amplified by Tn5 transposase-mediated transposition followed by T7 RNA polymerase-mediated transcription. ChIL-seq enables the detection of the antibody target localization under a fluorescence microscope and at the genomic level. Here we describe the detailed protocol of ChIL-seq with assessment methods for the key steps, including ChIL probe reaction, transposition, in situ transcription and sequencing library preparation. The protocol usually takes 3 d to prepare the sequencing library, including overnight incubations for the ChIL probe reaction and in situ transcription. The ChIL probe can be separately prepared and stored for several months, and its preparation and evaluation protocols are also documented in detail. An optional analysis for multiple targets (multitarget ChIL-seq) is also described. We anticipate that the protocol presented here will make the ChIL technique more widely accessible for analyzing precious samples and facilitate further applications.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação/métodos , Mapeamento Cromossômico/métodos , Proteínas de Ligação a DNA/análise , Animais , Linhagem Celular , Linhagem Celular Tumoral , Cromatina/metabolismo , Imunoprecipitação da Cromatina/métodos , Epigênese Genética/genética , Epigenômica/métodos , Biblioteca Gênica , Genoma , Genômica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Histonas/metabolismo , Humanos , Camundongos , Processamento de Proteína Pós-Traducional/genética , Análise de Sequência de DNA/métodos , Fatores de Transcrição/metabolismo , Transposases/metabolismo
17.
Sci Adv ; 6(25): eaaz6699, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32596448

RESUMO

Transcriptional bursting is the stochastic activation and inactivation of promoters, contributing to cell-to-cell heterogeneity in gene expression. However, the mechanism underlying the regulation of transcriptional bursting kinetics (burst size and frequency) in mammalian cells remains elusive. In this study, we performed single-cell RNA sequencing to analyze the intrinsic noise and mRNA levels for elucidating the transcriptional bursting kinetics in mouse embryonic stem cells. Informatics analyses and functional assays revealed that transcriptional bursting kinetics was regulated by a combination of promoter- and gene body-binding proteins, including the polycomb repressive complex 2 and transcription elongation factors. Furthermore, large-scale CRISPR-Cas9-based screening identified that the Akt/MAPK signaling pathway regulated bursting kinetics by modulating transcription elongation efficiency. These results uncovered the key molecular mechanisms underlying transcriptional bursting and cell-to-cell gene expression noise in mammalian cells.


Assuntos
Células-Tronco Embrionárias Murinas , Transcrição Gênica , Animais , Cinética , Mamíferos/genética , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo
18.
Elife ; 82019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31755865

RESUMO

We previously demonstrated that CRM1, a major nuclear export factor, accumulates at Hox cluster regions to recruit nucleoporin-fusion protein Nup98HoxA9, resulting in robust activation of Hox genes (Oka et al., 2016). However, whether this phenomenon is general to other leukemogenic proteins remains unknown. Here, we show that two other leukemogenic proteins, nucleoporin-fusion SET-Nup214 and the NPM1 mutant, NPM1c, which contains a nuclear export signal (NES) at its C-terminus and is one of the most frequent mutations in acute myeloid leukemia, are recruited to the HOX cluster region via chromatin-bound CRM1, leading to HOX gene activation in human leukemia cells. Furthermore, we demonstrate that this mechanism is highly sensitive to a CRM1 inhibitor in leukemia cell line. Together, these findings indicate that CRM1 acts as a key molecule that connects leukemogenic proteins to aberrant HOX gene regulation either via nucleoporin-CRM1 interaction (for SET-Nup214) or NES-CRM1 interaction (for NPM1c).


Assuntos
Carioferinas/genética , Leucemia Mieloide Aguda/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas Nucleares/genética , Receptores Citoplasmáticos e Nucleares/genética , Transporte Ativo do Núcleo Celular/genética , Linhagem Celular Tumoral , Núcleo Celular/genética , Cromatina/genética , Citoplasma/genética , Proteínas de Ligação a DNA/genética , Regulação Leucêmica da Expressão Gênica/genética , Chaperonas de Histonas/genética , Proteínas de Homeodomínio/genética , Humanos , Leucemia Mieloide Aguda/patologia , Mutação/genética , Sinais de Exportação Nuclear/genética , Nucleofosmina , Proteína Exportina 1
19.
Elife ; 82019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31545169

RESUMO

In overloaded and regenerating muscle, the generation of new myonuclei depends on muscle satellite cells (MuSCs). Because MuSC behaviors in these two environments have not been considered separately, MuSC behaviors in overloaded muscle remain unexamined. Here, we show that most MuSCs in overloaded muscle, unlike MuSCs in regenerating muscle, proliferate in the absence of MyoD expression. Mechanistically, MuSCs in overloaded muscle sustain the expression of Heyl, a Notch effector gene, to suppress MyoD expression, which allows effective MuSC proliferation on myofibers and beneath the basal lamina. Although Heyl-knockout mice show no impairment in an injury model, in a hypertrophy model, their muscles harbor fewer new MuSC-derived myonuclei due to increased MyoD expression and diminished proliferation, which ultimately causes blunted hypertrophy. Our results show that sustained HeyL expression is critical for MuSC proliferation specifically in overloaded muscle, and thus indicate that the MuSC-proliferation mechanism differs in overloaded and regenerating muscle.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Proliferação de Células , Regulação da Expressão Gênica , Hipertrofia , Músculos/fisiologia , Regeneração , Células Satélites de Músculo Esquelético/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Camundongos , Camundongos Knockout , Músculos/citologia , Proteína MyoD/metabolismo
20.
Open Biol ; 9(8): 190116, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31409230

RESUMO

Tn5 transposase is a bacterial enzyme that integrates a DNA fragment into genomic DNA, and is used as a tool for detecting nucleosome-free regions of genomic DNA in eukaryotes. However, in chromatin, the DNA targeting by Tn5 transposase has remained unclear. In the present study, we reconstituted well-positioned 601 dinucleosomes, in which two nucleosomes are connected with a linker DNA, and studied the DNA integration sites in the dinucleosomes by Tn5 transposase in vitro. We found that Tn5 transposase preferentially targets near the entry-exit DNA regions within the nucleosome. Tn5 transposase minimally cleaved the dinucleosome without a linker DNA, indicating that the linker DNA between two nucleosomes is important for the Tn5 transposase activity. In the presence of a 30 base-pair linker DNA, Tn5 transposase targets the middle of the linker DNA, in addition to the entry-exit sites of the nucleosome. Intriguingly, this Tn5-targeting characteristic is conserved in a dinucleosome substrate with a different DNA sequence from the 601 sequence. Therefore, the Tn5-targeting preference in the nucleosomal templates reported here provides important information for the interpretation of Tn5 transposase-based genomics methods, such as ATAC-seq.


Assuntos
Nucleossomos/química , Transposases/química , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , DNA/química , DNA/metabolismo , Histonas/metabolismo , Humanos , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Nucleossomos/genética , Nucleossomos/metabolismo , Ligação Proteica , Análise de Sequência de DNA , Transposases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...