Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; : e0109224, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847539

RESUMO

Herpes B virus (BV) is a zoonotic virus and belongs to the genus Simplexvius, the same genus as human herpes simplex virus (HSV). BV typically establishes asymptomatic infection in its natural hosts, macaque monkeys. However, in humans, BV infection causes serious neurological diseases and death. As such, BV research can only be conducted in a high containment level facility (i.e., biosafety level [BSL] 4), and the mechanisms of BV entry have not been fully elucidated. In this study, we generated a pseudotyped vesicular stomatitis virus (VSV) expressing BV glycoproteins using G-complemented VSV∆G system, which we named VSV/BVpv. We found that four BV glycoproteins (i.e., gB, gD, gH, and gL) were required for the production of a high-titer VSV/BVpv. Moreover, VSV/BVpv cell entry was dependent on the binding of gD to its cellular receptor nectin-1. Pretreatment of Vero cells with endosomal acidification inhibitors did not affect the VSV/BVpv infection. The result indicated that VSV/BVpv entry occurred by direct fusion with the plasma membrane of Vero cells and suggested that the entry pathway was similar to that of native HSV. Furthermore, we developed a VSV/BVpv-based chemiluminescence reduction neutralization test (CRNT), which detected the neutralization antibodies against BV in macaque plasma samples with high sensitivity and specificity. Crucially, the VSV/BVpv generated in this study can be used under BSL-2 condition to study the initial entry process through gD-nectin-1 interaction and the direct fusion of BV with the plasma membrane of Vero cells.IMPORTANCEHerpes B virus (BV) is a highly pathogenic zoonotic virus against humans. BV belongs to the genus Simplexvius, the same genus as human herpes simplex virus (HSV). By contrast to HSV, cell entry mechanisms of BV are not fully understood. The research procedures to manipulate infectious BV should be conducted in biosafety level (BSL)-4 facilities. As pseudotyped viruses provide a safe viral entry model because of their inability to produce infectious progeny virus, we tried to generate a pseudotyped vesicular stomatitis virus bearing BV glycoproteins (VSV/BVpv) by modification of expression constructs of BV glycoproteins, and successfully obtained VSV/BVpv with a high titer. This study has provided novel information for constructing VSV/BVpv and its usefulness to study BV infection.

2.
Microbiol Spectr ; 12(1): e0309123, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38095468

RESUMO

IMPORTANCE: Zoonotic infection of humans with herpes B virus (BV) causes severe neurological diseases. Acyclovir (ACV) and ganciclovir (GCV), most frequently used as anti-herpes drugs, are recommended for prophylaxis and therapy in human BV infection. In this study, we examined the property of BV thymidine kinase (TK) against anti-herpes drugs using a recombinant herpes simplex virus type 1 (HSV-1) carrying BV TK gene. We found that HSV-1 carrying BV TK was similarly sensitive to GCV as HSV-1 carrying varicella zoster virus TK. In addition, we demonstrated that BV TK was not mutated in the GCV- and ACV-resistant HSV-1 carrying BV TK, suggesting that ACV- or GCV-resistant BV might be rare during treatment with these antiviral drugs. These data can provide a new insight into the properties of BV TK in terms of the development of drug resistance.


Assuntos
Herpes Simples , Herpesvirus Cercopitecino 1 , Herpesvirus Humano 1 , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Herpesvirus Humano 1/genética , Timidina Quinase/genética , Timidina Quinase/uso terapêutico , Aciclovir/farmacologia , Aciclovir/uso terapêutico , Ganciclovir/farmacologia , Herpes Simples/tratamento farmacológico
3.
Emerg Infect Dis ; 30(1): 177-179, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38086399

RESUMO

Two human patients with Macacine alphaherpesvirus 1 infection were identified in Japan in 2019. Both patients had worked at the same company, which had a macaque facility. The rhesus-genotype B virus genome was detected in cerebrospinal fluid samples from both patients.


Assuntos
Herpesvirus Cercopitecino 1 , Doenças dos Macacos , Animais , Humanos , Japão/epidemiologia , Macaca mulatta , Genótipo
4.
Virus Res ; 340: 199301, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38096954

RESUMO

Heartland virus (HRTV) causes generalized symptoms, severe shock, and multiple organ failure. We previously reported that interferon-α/ß receptor knockout (IFNAR-/-) mice infected intraperitoneally with 1 × 107 tissue culture-infective dose (TCID50) of HRTV died, while those subcutaneously infected with the same dose of HRTV did not. The pathophysiology of IFNAR-/- mice infected with HRTV and the mechanism underlying the difference in disease severity, which depends on HRTV infection route, were analyzed in this study. The liver, spleen, mesenteric and axillary lymph nodes, and gastrointestinal tract of intraperitoneally (I.P.) infected mice had pathological changes; however, subcutaneously (S.C.) infected mice only had pathological changes in the axillary lymph node and gastrointestinal tract. HRTV RNA levels in the mesenteric lymph node, lung, liver, spleen, kidney, stomach, intestine, and blood were significantly higher in I.P. infected mice than those in S.C. infected mice. Chemokine ligand-1 (CXCL-1), tumor necrosis factor (TNF)-α, interleukin (IL)-12, interferon (IFN)-γ, and IL-10 levels in plasma of I.P. infected mice were higher than those of S.C. infected mice. These results indicated that high levels of viral RNA and the induction of inflammatory responses in HRTV-infected IFNAR-/- mice may be associated with disease severity.


Assuntos
Bunyaviridae , Interferon Tipo I , Receptor de Interferon alfa e beta , Animais , Camundongos , Receptor de Interferon alfa e beta/genética , Camundongos Knockout , Interferons , Fígado , Interleucina-12
5.
Viruses ; 14(8)2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-36016290

RESUMO

Heartland bandavirus (HRTV) is an emerging tick-borne virus that is distributed in the United States and that causes febrile illness with thrombocytopenia and leukocytopenia. It is genetically close to Dabie bandavirus, which is well known as severe fever with thrombocytopenia syndrome (SFTS) virus (SFTSV). The mortality rate of human HRTV infection is approximately 10%; however, neither approved anti-HRTV agents nor vaccines exist. An appropriate animal model should be developed to evaluate the efficacy of antiviral agents and vaccines against HRTV. The susceptibility of IFNAR-/- mice with HRTV infection was evaluated using subcutaneous, intraperitoneal, and retro-orbital inoculation routes. IFNAR-/- mice intraperitoneally infected with HRTV showed the most severe clinical signs, and the 50% lethal dose was 3.2 × 106 TCID50. Furthermore, to evaluate the utility of a novel lethal IFNAR-/- mice model, IFNAR-/- mice were orally administered favipiravir, ribavirin, or a solvent for 5 days immediately after a lethal dose of HRTV inoculation. The survival rates of the favipiravir-, ribavirin-, and solvent-administered mice were 100, 33, and 0%, respectively. The changes in bodyweights and HRTV RNA loads in the blood of favipiravir-treated IFNAR-/- mice were the lowest among the three groups, which suggests that favipiravir is a promising drug candidate for the treatment of patients with HRTV infection.


Assuntos
Phlebovirus , Trombocitopenia , Amidas , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Knockout , Pirazinas , Receptor de Interferon alfa e beta/genética , Ribavirina/uso terapêutico , Solventes
6.
Jpn J Infect Dis ; 75(5): 496-503, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-35491225

RESUMO

Neutralizing antibodies (NAbs) to human cytomegalovirus (HCMV) are associated with the risk of transplacental HCMV infection of the fetus in pregnant women. The IgG-positivity rate to HCMV determined by enzyme immunoassay (EIA) or indirect immunofluorescence assay has decreased from approximately 100% to 70% over the past 30 years in Japan. We tested serum samples from 630 Japanese women aged 20-49 years whose blood samples were obtained between 1980 and 2015. IgG titer was measured using an EIA-based assay. HCMV-NAb titer was measured using a neutralization test assay with an HCMV isolate on human retinal epithelial cells. Longitudinal transitions in HCMV-NAb prevalence were clarified. The prevalence of HCMV-EIA-IgG, and HCMV-NAb at a titer of 16-fold, and HCMV-NAb at a titer of 100-fold, changed from 96.7% to 78.9%, 93.3% to 85.6%, and 35.5% to 41.1%, respectively, between 1980-1990 and 2010-2015. Prevalence of HCMV-NAb at a titer of 16-fold decreased by 7.7%, whereas that at a titer of 100-fold increased by 5.6%. A high titer of HCMV-NAb in pregnant women is expected to reduce the risk of intrauterine HCMV transmission from the mother to the fetus. The association between the risk of congenital HCMV infection and the prevalence of HCMV-NAb remains to be addressed.


Assuntos
Anticorpos Neutralizantes , Citomegalovirus , Anticorpos Antivirais , Feminino , Humanos , Imunoglobulina G , Japão/epidemiologia , Gravidez , Prevalência
7.
Jpn J Infect Dis ; 75(4): 368-373, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34980708

RESUMO

Herpes simplex virus 1 (HSV-1)-TK (8UAG) expresses a truncated thymidine kinase (TK) translated from the second initiation codon due to a stop codon (UAG) at the 8th position (counted from the first initiation codon). Here, we showed that the sensitivity of HSV-1-TK (8UAG) to acyclovir (ACV) is similar to that of the control HSV-1 wild-type (WT), which expresses an intact TK protein. However, HSV-1-TK (44UAG), which expresses a truncated TK due to a UAG codon at position 44, showed lower sensitivity to ACV. A mouse infection model was used to compare the virulence of HSV-1-TK (8UAG) and HSV-1-TK (44UAG) to that of HSV-1 WT. The 50% lethal dose (LD50) for HSV-1-TK (44UAG) was 7.8-fold higher than that for HSV-1-TK (8UAG), whereas the LD50 for HSV-1-TK (8UAG) was the same as that for the parental HSV-1 WT. There were no statistically significant differences among HSV-1-TK (44UAG), HSV-1-TK (8UAG), and HSV-1 WT with respect to replication capacity and viral TK mRNA expression in the mouse brain. Thus, the virulence of HSV-1 expressing the truncated viral TK translated from the second initiation codon might depend on the position of the UAG stop codon.


Assuntos
Códon de Iniciação , Códon de Terminação , Herpesvirus Humano 1 , Timidina Quinase , Aciclovir , Animais , Antivirais/farmacologia , Códon de Iniciação/genética , Códon de Terminação/genética , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/patogenicidade , Camundongos , Mutação , Timidina Quinase/genética , Virulência/genética
8.
Viruses ; 13(4)2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923720

RESUMO

Detection of severe fever with thrombocytopenia syndrome (SFTS) virus (SFTSV) during the early phase of the disease is important for appropriate treatment, infection control, and prevention of further transmission. The reverse transcription loop-mediated isothermal amplification (RT-LAMP) is a nucleic acid amplification method that amplifies the target sequence under isothermal conditions. Here, we developed an RT-LAMP with a novel primer/probe set targeting a conserved region of the SFTSV L segment after extraction of viral RNA (standard RT-LAMP). Both the Chinese and Japanese SFTSV strains, including various genotypes, were detected by the standard RT-LAMP. We also performed RT-LAMP using the same primer/probe set but without the viral RNA extraction step (called simplified RT-LAMP) and evaluated the diagnostic efficacy. The sensitivity and specificity of the simplified RT-LAMP were 84.9% (45/53) and 89.5% (2/19), respectively. The simplified RT-LAMP can detect SFTSV in human sera containing >103.5 copies/mL viral RNA. The two RT-LAMP positive but quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) negative samples were positive in the conventional RT-PCR, suggesting that there was no false positive reaction in the RT-LAMP. Both the standard and simplified RT-LAMP are useful for detecting the SFTSV genome in patients during the early phase of the disease.


Assuntos
Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Phlebovirus/isolamento & purificação , RNA Viral , Reação em Cadeia da Polimerase em Tempo Real/métodos , Febre Grave com Síndrome de Trombocitopenia/diagnóstico , Humanos , Sensibilidade e Especificidade
9.
PLoS Pathog ; 17(2): e1008859, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33534867

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) caused by a species Dabie bandavirus (formerly SFTS virus [SFTSV]) is an emerging hemorrhagic infectious disease with a high case-fatality rate. One of the best strategies for preventing SFTS is to develop a vaccine, which is expected to induce both humoral and cellular immunity. We applied a highly attenuated but still immunogenic vaccinia virus strain LC16m8 (m8) as a recombinant vaccine for SFTS. Recombinant m8s expressing SFTSV nucleoprotein (m8-N), envelope glycoprotein precursor (m8-GPC), and both N and GPC (m8-N+GPC) in the infected cells were generated. Both m8-GPC- and m8-N+GPC-infected cells were confirmed to produce SFTSV-like-particles (VLP) in vitro, and the N was incorporated in the VLP produced by the infection of cells with m8-N+GPC. Specific antibodies to SFTSV were induced in mice inoculated with each of the recombinant m8s, and the mice were fully protected from lethal challenge with SFTSV at both 103 TCID50 and 105 TCID50. In mice that had been immunized with vaccinia virus strain Lister in advance of m8-based SFTSV vaccine inoculation, protective immunity against the SFTSV challenge was also conferred. The pathological analysis revealed that mice immunized with m8-GPC or m8-N+GPC did not show any histopathological changes without any viral antigen-positive cells, whereas the control mice showed focal necrosis with inflammatory infiltration with SFTSV antigen-positive cells in tissues after SFTSV challenge. The passive serum transfer experiments revealed that sera collected from mice inoculated with m8-GPC or m8-N+GPC but not with m8-N conferred protective immunity against lethal SFTSV challenge in naïve mice. On the other hand, the depletion of CD8-positive cells in vivo did not abrogate the protective immunity conferred by m8-based SFTSV vaccines. Based on these results, the recombinant m8-GPC and m8-N+GPC were considered promising vaccine candidates for SFTS.


Assuntos
Antígenos Virais/imunologia , Nucleoproteínas/imunologia , Phlebovirus/imunologia , Febre Grave com Síndrome de Trombocitopenia/prevenção & controle , Vacinas Atenuadas/administração & dosagem , Vacinas Sintéticas/administração & dosagem , Proteínas do Envelope Viral/imunologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Febre Grave com Síndrome de Trombocitopenia/imunologia , Febre Grave com Síndrome de Trombocitopenia/virologia
10.
Virol J ; 17(1): 120, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32746933

RESUMO

BACKGROUND: Human cytomegalovirus (HCMV) causes asymptomatic infections, but also causes congenital infections when women were infected with HCMV during pregnancy, and life-threatening diseases in immunocompromised patients. To better understand the mechanism of the neutralization activity against HCMV, the association of HCMV NT antibody titers was assessed with the antibody titers against each glycoprotein complex (gc) of HCMV. METHODS: Sera collected from 78 healthy adult volunteers were used. HCMV Merlin strain and HCMV clinical isolate strain 1612 were used in the NT assay with the plaque reduction assay, in which both the MRC-5 fibroblasts cells and the RPE-1 epithelial cells were used. Glycoprotein complex of gB, gH/gL complexes (gH/gL/gO and gH/gL/UL128-131A [PC]) and gM/gN were selected as target glycoproteins. 293FT cells expressed with gB, gM/gN, gH/gL/gO, or PC, were prepared and used for the measurement of the antibody titers against each gc in an indirect immunofluorescence assay (IIFA). The correlation between the IIFA titers to each gc and the HCMV-NT titers was evaluated. RESULTS: There were no significant correlations between gB-specific IIFA titers and the HCMV-NT titers in epithelial cells or between gM/gN complex-specific IIFA titers and the HCMV-NT titers. On the other hand, there was a statistically significant positive correlation between the IIFA titers to gH/gL complexes and HCMV-NT titers. CONCLUSIONS: The data suggest that the gH/gL complexes might be the major target to induce NT activity against HCMV.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Citomegalovirus/imunologia , Imunoglobulina G/sangue , Proteínas do Envelope Viral/imunologia , Adulto , Linhagem Celular , Citomegalovirus/genética , Feminino , Fibroblastos/virologia , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
11.
J Virol ; 94(18)2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32669329

RESUMO

Herpesviruses exist in nature within each host animal. Ten herpesviruses have been isolated from bats and their biological properties reported. A novel bat alphaherpesvirus, which we propose to name "Pteropus lylei-associated alphaherpesvirus (PLAHV)," was isolated from urine of the fruit bat Pteropus lylei in Vietnam and characterized. The entire genome sequence was determined to be 144,008 bp in length and predicted to include 72 genes. PLAHV was assigned to genus Simplexvirus with other bat alphaherpesviruses isolated from pteropodid bats in Southeast Asia and Africa. The replication capacity of PLAHV in several cells was evaluated in comparison with that of herpes simplex virus 1 (HSV-1). PLAHV replicated better in the bat-originated cell line and less in human embryonic lung fibroblasts than HSV-1 did. PLAHV was serologically related to another bat alphaherpesvirus, Pteropodid alphaherpesvirus 1 (PtAHV1), isolated from a Pteropus hypomelanus-related bat captured in Indonesia, but not with HSV-1. PLAHV caused lethal infection in mice. PLAHV was as susceptible to acyclovir as HSV-1 was. Characterization of this new member of bat alphaherpesviruses, PLAHV, expands the knowledge on bat-associated alphaherpesvirology.IMPORTANCE A novel bat alphaherpesvirus, Pteropus lylei-associated alphaherpesvirus (PLAHV), was isolated from urine of the fruit bat Pteropus lylei in Vietnam. The whole-genome sequence was determined and was predicted to include 72 open reading frames in the 144,008-bp genome. PLAHV is circulating in a species of fruit bats, Pteropus lylei, in Asia. This study expands the knowledge on bat-associated alphaherpesvirology.


Assuntos
Alphaherpesvirinae/genética , Quirópteros/virologia , Genoma Viral , Infecções por Herpesviridae/veterinária , Proteínas Virais/genética , Aciclovir/farmacologia , Alphaherpesvirinae/classificação , Alphaherpesvirinae/efeitos dos fármacos , Alphaherpesvirinae/patogenicidade , Animais , Antivirais/farmacologia , Células COS , Linhagem Celular , Chlorocebus aethiops , Fibroblastos/virologia , Expressão Gênica , Tamanho do Genoma , Células HeLa , Infecções por Herpesviridae/tratamento farmacológico , Infecções por Herpesviridae/epidemiologia , Infecções por Herpesviridae/mortalidade , Herpesvirus Humano 1/classificação , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/crescimento & desenvolvimento , Herpesvirus Humano 1/patogenicidade , Humanos , Camundongos , Filogenia , Análise de Sobrevida , Células Vero , Vietnã/epidemiologia , Proteínas Virais/metabolismo , Replicação Viral
12.
Jpn J Infect Dis ; 73(6): 447-451, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-32611982

RESUMO

Morphological changes in the structure of the herpes simplex virus 1 (HSV-1) viral thymidine kinase (vTK) polypeptide usually lead to conferring acyclovir (ACV) resistance. HSV-1 I4-2, in which a UAG stop codon is present at the 8th position between the 1st initiation AUG codon (1st position) and the 2nd initiation AUG codon (46th position) of the HSV-1 vTK gene, showed sensitivity to ACV. In contrast, HSV-1 KG111, in which a UAG stop codon was artificially inserted at the 44th position, showed resistance to ACV at 39˚C. The mechanism underlying the difference in the sensitivity profiles was elucidated. The virus recombinants HSV-1-TK(8UAG) and HSV-1-TK(44UAG) containing a UAG stop codon at the 8th and 44th positions counted from the 1st initiation codon, respectively, were generated and tested for susceptibility to antiviral compounds. HSV-1-TK(8UAG) and HSV-1-TK(44UAG) were sensitive and resistant to ACV and BVdU at 37˚C, respectively. The expression level of the truncated vTK translated from the 2nd initiation codon in Vero cells infected with HSV-1-TK(44UAG) was clearly less than that with HSV-1-TK(8UAG) in a temperature-dependent manner. The differences in the antiviral sensitivity profiles were due to the position of the UAG stop codon between the 1st and the 2nd initiation codons.


Assuntos
Aciclovir/farmacologia , Antivirais/farmacologia , Farmacorresistência Viral/genética , Herpesvirus Humano 1/genética , Timidina Quinase/genética , Animais , Bromodesoxiuridina/análogos & derivados , Bromodesoxiuridina/farmacologia , Linhagem Celular , Chlorocebus aethiops , Códon de Iniciação/genética , Códon de Terminação/genética , Herpesvirus Humano 1/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana/métodos , Mutação , Células Vero , Ensaio de Placa Viral , Replicação Viral/efeitos dos fármacos
13.
Arch Virol ; 165(2): 313-320, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31813023

RESUMO

Epstein-Barr virus (EBV) is a ubiquitous human herpesvirus that transforms primary B lymphocytes, yielding lymphoblastoid cell lines (LCLs). EBV-encoded nuclear antigen 2 (EBNA2) and EBV-encoded nuclear antigen leader protein (EBNALP) are the first viral products expressed after EBV infection of primary B lymphocytes and are essential for EBV-induced B-lymphocyte growth transformation. EBNA2 functions as a transcriptional activator of viral and cellular genes, with EBNALP as a coactivator for EBNA2-mediated transcriptional activation. We previously reported that mutant EBNALP with a C-terminal 10-amino-acid truncation loses the ability to coactivate, and has a dominant-negative effect on wild-type-EBNALP-mediated coactivation. However, the functional relevance of EBNALP in maintenance of LCL cell growth has not been investigated. To address this, we have constructed LCL-derived cell clones in which this dominant-negative form of EBNALP (DNLP) is conditionally expressed by the Cre-loxP system. We used these cells to evaluate the effect of DNLP expression on EBV-induced cell proliferation. After drug treatment, the DNLP-expressing LCL clones showed reduced cell proliferation and viability. These results indicate that EBNALP is critical for maintaining LCL growth and EBV-induced cell proliferation.


Assuntos
Linfócitos B/virologia , Proliferação de Células , Transformação Celular Viral , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Expressão Gênica , Herpesvirus Humano 4/crescimento & desenvolvimento , Proteínas Mutantes/metabolismo , Proteínas Virais/metabolismo , Linhagem Celular , Antígenos Nucleares do Vírus Epstein-Barr/genética , Humanos , Proteínas Mutantes/genética , Proteínas Virais/genética
14.
PLoS One ; 14(10): e0223684, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31589656

RESUMO

Middle East respiratory syndrome-coronavirus (MERS-CoV) is an emerging virus that causes severe disease with fatal outcomes; however, there are currently no approved vaccines or specific treatments against MERS-CoV. Here, we developed a novel bivalent vaccine against MERS-CoV and rabies virus (RV) using the replication-incompetent P-gene-deficient RV (RVΔP), which has been previously established as a promising and safe viral vector. MERS-CoV spike glycoprotein comprises S1 and S2 subunits, with the S1 subunit being a primary target of neutralizing antibodies. Recombinant RVΔP, which expresses S1 fused with transmembrane and cytoplasmic domains together with 14 amino acids from the ectodomains of the RV-glycoprotein (RV-G), was developed using a reverse genetics method and named RVΔP-MERS/S1. Following generation of RVΔP-MERS/S1 and RVΔP, our analysis revealed that they shared similar growth properties, with the expression of S1 in RVΔP-MERS/S1-infected cells confirmed by immunofluorescence and western blot, and the immunogenicity and pathogenicity evaluated using mouse infection experiments. We observed no rabies-associated signs or symptoms in mice inoculated with RVΔP-MERS/S1. Moreover, virus-specific neutralizing antibodies against both MERS-CoV and RV were induced in mice inoculated intraperitoneally with RVΔP-MERS/S1. These findings indicate that RVΔP-MERS/S1 is a promising and safe bivalent-vaccine candidate against both MERS-CoV and RV.


Assuntos
Infecções por Coronavirus/prevenção & controle , Imunogenicidade da Vacina , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Vírus da Raiva/genética , Vacinas Sintéticas/imunologia , Vacinas Virais/imunologia , Replicação Viral , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linhagem Celular Tumoral , Chlorocebus aethiops , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Vírus da Raiva/fisiologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Sintéticas/genética , Células Vero , Vacinas Virais/genética
15.
Artigo em Inglês | MEDLINE | ID: mdl-30858222

RESUMO

Acyclovir (ACV) resistance-associated mutations in two recombinant herpes simplex virus 1 (HSV-1) clones were compared. Recombinant HSV-1 lacking its thymidine kinase (TK) and expressing varicella-zoster virus (VZV) TK ectopically had no mutations in the VZV TK gene. In contrast, recombinant HSV-1 expressing HSV-1 TK ectopically harbored mutations in the HSV-1 TK gene. These results suggest that the relatively low frequency of ACV-resistant VZV is a consequence of the characteristics of the TK gene.


Assuntos
Aciclovir/farmacologia , Antivirais/farmacologia , Herpesvirus Humano 1/efeitos dos fármacos , Animais , Linhagem Celular , Chlorocebus aethiops , Farmacorresistência Viral/genética , Herpesvirus Humano 1/genética , Herpesvirus Humano 3/efeitos dos fármacos , Herpesvirus Humano 3/genética , Humanos , Mutação/genética , Timidina Quinase/genética , Células Vero
16.
Jpn J Infect Dis ; 71(5): 343-349, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-29848849

RESUMO

Several cases of herpes simplex encephalitis (HSE) caused by acyclovir (ACV)-resistant herpes simplex virus type 1 (HSV-1) have been reported. Amino acid substitutions of R41H, Q125H, and A156V in the viral thymidine kinase (vTK) gene have been reported to confer ACV resistance. Recombinant HSV-1 clones, containing each amino acid substitution in the vTK gene, were generated using the bacterial artificial chromosome system. A recombinant HSV-1 with the Q125H substitution showed ACV resistance while the R41H or A156V substitutions were ACV-sensitive. Furthermore, the Q125H recombinant HSV-1 was less virulent than the repaired virus, but it maintained neurovirulence in mice at relatively high levels. Substitution of Q125H, which was detected in the neonatal HSE patient, conferred ACV resistance, but the substitutions of R41H and A156V, which were detected in immunocompetent adult HSE patients, did not. This suggests that HSE caused by ACV-resistant HSV-1 might be a very rare event to occur during the course of ACV treatment in immunocompetent patients. Showing resistance to ACV treatment does not always indicate emergence of ACV-resistant HSV-1 in HSE patients.


Assuntos
Aciclovir/farmacologia , Substituição de Aminoácidos , Antivirais/farmacologia , Encefalite por Herpes Simples/virologia , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/patogenicidade , Timidina Quinase/genética , Adulto , Idoso , Animais , Linhagem Celular , Cromossomos Artificiais Bacterianos , Modelos Animais de Doenças , Farmacorresistência Viral , Encefalite por Herpes Simples/patologia , Feminino , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/isolamento & purificação , Humanos , Recém-Nascido , Masculino , Camundongos Endogâmicos ICR , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Proteínas Mutantes/genética , Genética Reversa , Virulência , Fatores de Virulência/genética
17.
Jpn J Infect Dis ; 71(3): 229-233, 2018 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-29709968

RESUMO

A novel system was developed for generating highly attenuated vaccinia virus LC16m8 (m8, third-generation smallpox vaccine) that expresses foreign genes. The innovations in this system are its excisable selection marker, specificity of the integration site of a gene of interest, and easy identification of clones with a fluorescent signal. Using this system, recombinant m8s, which expressed herpes simplex virus 2 (HSV-2) glycoprotein B (gB)-, gD-, or both gB and gD (gB + gD), were generated, and their efficacy was evaluated. First, the induction of a specific IgG against these HSV-2 glycoproteins in mice infected with one of these recombinant m8s was confirmed by an immunofluorescent assay. Next, mice preinfected with one of the recombinant m8s were infected with HSV-2 at a lethal dose to examine the vaccine efficacy. The fatality rate among the mice preinfected with either the recombinant gB + gD- or gD-expressing m8 significantly decreased in comparison with the control. The survival rate in male and female mice preinfected with either the recombinant gB + gD- or gD-expressing m8 increased to 100% and 60%, respectively, while most of the control mice died. In summary, this new system may be applicable to creation of a novel m8-based vaccine.


Assuntos
Herpesvirus Humano 2/imunologia , Vacinas contra Herpesvirus/genética , Vaccinia virus/genética , Animais , Chlorocebus aethiops , Feminino , Herpes Simples/imunologia , Herpes Simples/prevenção & controle , Vacinas contra Herpesvirus/imunologia , Vacinas contra Herpesvirus/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasmídeos/genética , Vaccinia virus/metabolismo , Células Vero
18.
PLoS One ; 13(2): e0192725, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29474493

RESUMO

LC16m8 (m8), a highly attenuated vaccinia virus (VAC) strain, was developed as a smallpox vaccine, and its safety and immunogenicity have been confirmed. Here, we aimed to develop a system that recovers infectious m8 from a bacterial artificial chromosome (BAC) that retains the full-length viral genomic DNA (m8-BAC system). The infectious virus was successfully recovered from a VAC-BAC plasmid, named pLC16m8-BAC. Furthermore, the bacterial replicon-free virus was generated by intramolecular homologous recombination and was successfully recovered from a modified VAC-BAC plasmid, named pLC16m8.8S-BAC. Also, the growth of the recovered virus was indistinguishable from that of authentic m8. The full genome sequence of the plasmid, which harbors identical inverted terminal repeats (ITR) to that of authentic m8, was determined by long-read next-generation sequencing (NGS). The ITR contains x 18 to 32 of the 70 and x 30 to 45 of 54 base pair tandem repeats, and the number of tandem repeats was different between the ITR left and right. Since the virus recovered from pLC16m8.8S-BAC was expected to retain the identical viral genome to that of m8, including the ITR, a reference-based alignment following a short-read NGS was performed to validate the sequence of the recovered virus. Based on the pattern of coverage depth in the ITR, no remarkable differences were observed between the virus and m8, and the other region was confirmed to be identical as well. In summary, this new system can recover the virus, which is geno- and phenotypically indistinguishable from authentic m8.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Cromossomos Artificiais Bacterianos/virologia , Genoma Viral , Vaccinia virus/genética , Animais , Sequência de Bases , Linhagem Celular , DNA Viral/genética , Proteínas de Fluorescência Verde/genética , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutagênese , Plasmídeos/genética , Coelhos , Análise de Sequência de DNA , Vacina Antivariólica/genética , Vacina Antivariólica/imunologia , Sequências Repetidas Terminais , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vaccinia virus/imunologia , Vaccinia virus/patogenicidade , Virulência/genética , Virulência/imunologia
19.
J Virol Methods ; 251: 123-128, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29074089

RESUMO

Ion Torrent next-generation sequencing (NGS) technology was applied to study the mode of emergence of acyclovir (ACV)-resistant (ACVr) herpes simplex virus type 1 (HSV-1) in patients with hematopoietic stem cell transplantation (HSCT) by quantitatively detecting mutations in the viral thymidine kinase (vTK) gene in the HSV-1 isolates recovered from HSCT patients. All of the mutations detected with the Sanger sequencing method in the vTK genes of HSV-1 isolates were also detected with the NGS assay. Furthermore, different mutations, which conferred ACV resistance and were not detected with the Sanger sequencing method, were also detected in a quantitative manner by using the NGS assay. The approach described here is applicable to studying the emergence process of vTK gene mutation-associated ACVr HSV-1 more in detail than the Sanger method. The NGS assay makes it possible to make a diagnosis of vTK gene mutation-associated ACVr HSV-1 infections at the early stage, which the ratio of ACVr HSV-1 is much lower than that of ACV-sensitive (ACVs) HSV-1.


Assuntos
Aciclovir/farmacologia , Antivirais/farmacologia , Farmacorresistência Viral , Técnicas de Genotipagem/métodos , Herpesvirus Humano 1/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Testes de Sensibilidade Microbiana/métodos , Transplante de Células-Tronco Hematopoéticas , Herpes Simples/virologia , Herpesvirus Humano 1/enzimologia , Herpesvirus Humano 1/genética , Humanos , Mutação , Timidina Quinase/genética
20.
J Infect Dis ; 215(6): 865-873, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28453848

RESUMO

Background: Antiviral-resistant herpes simplex virus type 1 (HSV-1) has been recognized as an emerging clinical problem among patients undergoing hematopoietic stem cell transplantation (HSCT). Methods: A prospective observational study was conducted at a hematological center over a 2-year period. Oropharyngeal swab samples were serially collected each week from 1 week before and up to 100 days after HSCT and were tested for virus isolation. The HSV-1 isolates were tested for sensitivity to acyclovir (ACV). The prognosis of patients with ACV-resistant (ACVr) HSV-1 and the genetic background of the ACVr HSV-1 isolates were assessed. Results: Herpes simplex virus type 1 was isolated in 39 of 268 (15%) HSCT patients within 100 days after transplantation. Acyclovir-resistant HSV-1 emerged in 11 of these 39 patients (28%). The 100-day death rates of HSCT patients without HSV-1 shedding, those with only ACV-sensitive HSV-1 shedding, and those with ACVr HSV-1 shedding were 31%, 39%, and 64%, respectively. Patients with HSV-1, including ACVr HSV-1, shedding showed a significantly higher mortality rate. Relapsed malignancies were a significant risk factor for the emergence of ACVr HSV-1. Acyclovir resistance was attributable to viral thymidine kinase and DNA polymerase mutations in 6 and 5 patients, respectively. Conclusions: Herpes simplex virus type 1, including ACVr HSV-1, shedding was associated with poorer outcome in HSCT patients, even if HSV disease did not always occur. Patients with relapsed malignancies were at especially high risk for the emergence of ACVr HSV-1.


Assuntos
Aciclovir/uso terapêutico , Antivirais/uso terapêutico , Farmacorresistência Viral , Transplante de Células-Tronco Hematopoéticas/mortalidade , Herpes Simples/tratamento farmacológico , Herpesvirus Humano 1/efeitos dos fármacos , Adolescente , Adulto , Idoso , DNA Polimerase Dirigida por DNA/genética , Feminino , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Herpes Simples/virologia , Herpesvirus Humano 1/isolamento & purificação , Humanos , Japão , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Análise Multivariada , Complicações Pós-Operatórias/virologia , Prognóstico , Modelos de Riscos Proporcionais , Estudos Prospectivos , Recidiva , Taxa de Sobrevida , Timidina Quinase/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...