Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 96(1-1): 012202, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29347195

RESUMO

In the present work, we aim at taking a step towards the spectral stability analysis of Peregrine solitons, i.e., wave structures that are used to emulate extreme wave events. Given the space-time localized nature of Peregrine solitons, this is a priori a nontrivial task. Our main tool in this effort will be the study of the spectral stability of the periodic generalization of the Peregrine soliton in the evolution variable, namely the Kuznetsov-Ma breather. Given the periodic structure of the latter, we compute the corresponding Floquet multipliers, and examine them in the limit where the period of the orbit tends to infinity. This way, we extrapolate towards the stability of the limiting structure, namely the Peregrine soliton. We find that multiple unstable modes of the background are enhanced, yet no additional unstable eigenmodes arise as the Peregrine limit is approached. We explore the instability evolution also in direct numerical simulations.

2.
Philos Trans A Math Phys Eng Sci ; 360(1799): 2189-243, 2002 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-12804233

RESUMO

The existence of a line solitary-wave solution to the water-wave problem with strong surface-tension effects was predicted on the basis of a model equation in the celebrated 1895 paper by D. J. Korteweg and G. de Vries and rigorously confirmed a century later by C. J. Amick and K. Kirchgässner in 1989. A model equation derived by B. B. Kadomtsev and V. I. Petviashvili in 1970 suggests that the Korteweg-de Vries line solitary wave belongs to a family of periodically modulated solitary waves which have a solitary-wave profile in the direction of motion and are periodic in the transverse direction. This prediction is rigorously confirmed for the full water-wave problem in the present paper. It is shown that the Korteweg-de Vries solitary wave undergoes a dimension-breaking bifurcation that generates a family of periodically modulated solitary waves. The term dimension-breaking phenomenon describes the spontaneous emergence of a spatially inhomogeneous solution of a partial differential equation from a solution which is homogeneous in one or more spatial dimensions.


Assuntos
Gravitação , Modelos Teóricos , Reologia/métodos , Movimentos da Água , Água , Movimento (Física) , Tensão Superficial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...