Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 28(9): 3982-3993, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37735502

RESUMO

Tau protein is implicated in the pathogenesis of Alzheimer's disease (AD) and other tauopathies, but its physiological function is in debate. Mostly explored in the brain, tau is also expressed in the pancreas. We further explored the mechanism of tau's involvement in the regulation of glucose-stimulated insulin secretion (GSIS) in islet ß-cells, and established a potential relationship between type 2 diabetes mellitus (T2DM) and AD. We demonstrate that pancreatic tau is crucial for insulin secretion regulation and glucose homeostasis. Tau levels were found to be elevated in ß-islet cells of patients with T2DM, and loss of tau enhanced insulin secretion in cell lines, drosophila, and mice. Pharmacological or genetic suppression of tau in the db/db diabetic mouse model normalized glucose levels by promoting insulin secretion and was recapitulated by pharmacological inhibition of microtubule assembly. Clinical studies further showed that serum tau protein was positively correlated with blood glucose levels in healthy controls, which was lost in AD. These findings present tau as a common therapeutic target between AD and T2DM.


Assuntos
Doença de Alzheimer , Diabetes Mellitus Tipo 2 , Humanos , Camundongos , Animais , Insulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Secreção de Insulina , Proteínas tau/metabolismo , Pâncreas/metabolismo , Pâncreas/patologia , Glucose/metabolismo , Doença de Alzheimer/metabolismo
2.
J Mol Endocrinol ; 69(1): 269-283, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35388795

RESUMO

We previously identified a novel pathway of testosterone action via the androgen receptor (AR) in bone marrow mesenchymal precursor cells (BM-PCs) to negatively regulate fat mass and improve metabolic function in male mice. This was achieved using our PC-AR Gene Replacement mouse model in which the AR is only expressed in BM-PCs and deleted in all other tissues. We hypothesise that the markedly reduced fat mass and increased insulin sensitivity of PC-AR Gene Replacements will confer protection from diet-induced overweight and obesity. To test this, 6-week-old male PC-AR Gene Replacements and controls (WT, global-AR knockouts (KOs)) were fed a chow or high-caloric diet (HCD) for 8 or 18 weeks. Following 8 weeks (short-term) of HCD, WT and Global-ARKOs had markedly increased subcutaneous white adipose tissue (WAT) and retroperitoneal visceral adipose tissue (VAT) mass compared to chow-fed controls. In contrast, PC-AR Gene Replacements were resistant to WAT and VAT accumulation following short-term HCD feeding accompanied by fewer large adipocytes and upregulation of expression of the metabolic genes Acaca and Pnlpa2. Following long-term HCD feeding for 18 weeks, the PC-AR Gene Replacements were no longer resistant to increased WAT and VAT adiposity, however, maintained their improved whole-body insulin sensitivity with an increased rate of glucose disappearance and increased glucose uptake into subcutaneous WAT. In conclusion, the action of testosterone via the AR in BM-PCs to negatively regulate fat mass and improve metabolism confers resistance from short-term diet-induced weight gain and partial protection from long-term diet-induced obesity in male mice.


Assuntos
Resistência à Insulina , Animais , Medula Óssea/metabolismo , Dieta Hiperlipídica/efeitos adversos , Resistência à Insulina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/metabolismo , Sobrepeso , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Células-Tronco/metabolismo , Testosterona , Aumento de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...