Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(2): 108907, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38318365

RESUMO

SAMHD1 is a dNTP triphosphohydrolase governing nucleotide pool homeostasis and can detoxify chemotherapy metabolites controlling their clinical responses. To understand SAMHD1 biology and investigate the potential of targeting SAMHD1 as neoadjuvant to current chemotherapies, we set out to discover selective small-molecule inhibitors. Here, we report a discovery pipeline encompassing a biochemical screening campaign and a set of complementary biochemical, biophysical, and cell-based readouts for rigorous characterization of the screen output. The identified small molecules, TH6342 and analogs, accompanied by inactive control TH7126, demonstrated specific, low µM potency against both physiological and oncology-drug-derived substrates. By coupling kinetic studies with thermal shift assays, we reveal the inhibitory mechanism of TH6342 and analogs, which engage pre-tetrameric SAMHD1 and deter oligomerization and allosteric activation without occupying nucleotide-binding pockets. Altogether, our study diversifies inhibitory modes against SAMHD1, and the discovery pipeline reported herein represents a thorough framework for future SAMHD1 inhibitor development.

2.
Methods Appl Fluoresc ; 11(4)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37726005

RESUMO

Photo-induced dark transient states of fluorophores can pose a problem in fluorescence spectroscopy. However, their typically long lifetimes also make them highly environment sensitive, suggesting fluorophores with prominent dark-state formation yields to be used as microenvironmental sensors in bio-molecular spectroscopy and imaging. In this work, we analyzed the singlet-triplet transitions of fluorescein and three synthesized carboxy-fluorescein derivatives, with one, two or four bromines linked to the anthracence backbone. Using transient state (TRAST) spectroscopy, we found a prominent internal heavy atom (IHA) enhancement of the intersystem crossing (ISC) rates upon bromination, inferred by density functional theory calculations to take place via a higher triplet state, followed by relaxation to the lowest triplet state. A corresponding external heavy atom (EHA) enhancement was found upon adding potassium iodide (KI). Notably, increased KI concentrations still resulted in lowered triplet state buildup in the brominated fluorophores, due to relatively lower enhancements in ISC, than in the triplet decay. Together with an antioxidative effect on the fluorophores, adding KI thus generated a fluorescence enhancement of the brominated fluorophores. By TRAST measurements, analyzing the average fluorescence intensity of fluorescent molecules subject to a systematically varied excitation modulation, dark state transitions within very high triplet yield (>90%) fluorophores can be directly analyzed under biologically relevant conditions. These measurements, not possible by other techniques such as fluorescence correlation spectroscopy, opens for bio-sensing applications based on high triplet yield fluorophores, and for characterization of high triplet yield photodynamic therapy agents, and how they are influenced by IHA and EHA effects.


Assuntos
Corantes Fluorescentes , Corantes Fluorescentes/química , Fluoresceína , Espectrometria de Fluorescência/métodos
4.
Biochem Pharmacol ; 203: 115184, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35872325

RESUMO

Loss of heterozygosity (LOH) is a hallmark feature of cancer genomes that reduces allelic variation, thereby creating tumor specific vulnerabilities which could be exploited for therapeutic purposes. We previously reported that loss of drug metabolic arylamine N-acetyltransferase 2 (NAT2) activity following LOH at 8p22 could be targeted for collateral lethality anticancer therapy in colorectal cancer (CRC). Here, we report a novel compound CBK034026C that exhibits specific toxicity towards CRC cells with high NAT2 activity. Connectivity Map analysis revealed that CBK034026C elicited a response pattern related to ATPase inhibitors. Similar to ouabain, a potent inhibitor of the Na+/K+-ATPase, CBK034026C activated the Nf-kB pathway. Further metabolomic profiling revealed downregulation of pathways associated with antioxidant defense and mitochondrial metabolism in CRC cells with high NAT2 activity, thereby weakening the protective response to oxidative stress induced by CBK034026C. The identification of a small molecule targeting metabolic vulnerabilities caused by NAT2 activity provides novel avenues for development of anticancer agents.


Assuntos
Antineoplásicos , Arilamina N-Acetiltransferase , Neoplasias Colorretais , Acetiltransferases/genética , Adenosina Trifosfatases , Alelos , Antineoplásicos/farmacologia , Arilamina N-Acetiltransferase/genética , Arilamina N-Acetiltransferase/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Humanos
5.
Nat Cancer ; 3(2): 156-172, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35228749

RESUMO

The folate metabolism enzyme MTHFD2 (methylenetetrahydrofolate dehydrogenase/cyclohydrolase) is consistently overexpressed in cancer but its roles are not fully characterized, and current candidate inhibitors have limited potency for clinical development. In the present study, we demonstrate a role for MTHFD2 in DNA replication and genomic stability in cancer cells, and perform a drug screen to identify potent and selective nanomolar MTHFD2 inhibitors; protein cocrystal structures demonstrated binding to the active site of MTHFD2 and target engagement. MTHFD2 inhibitors reduced replication fork speed and induced replication stress followed by S-phase arrest and apoptosis of acute myeloid leukemia cells in vitro and in vivo, with a therapeutic window spanning four orders of magnitude compared with nontumorigenic cells. Mechanistically, MTHFD2 inhibitors prevented thymidine production leading to misincorporation of uracil into DNA and replication stress. Overall, these results demonstrate a functional link between MTHFD2-dependent cancer metabolism and replication stress that can be exploited therapeutically with this new class of inhibitors.


Assuntos
Aminoidrolases , Leucemia Mieloide Aguda , Aminoidrolases/genética , Humanos , Hidrolases , Leucemia Mieloide Aguda/tratamento farmacológico , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Enzimas Multifuncionais/genética , Timidina
6.
Autophagy ; 18(7): 1486-1502, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34740308

RESUMO

The ubiquitin-proteasome system (UPS) and macroautophagy/autophagy are the main proteolytic systems in eukaryotic cells for preserving protein homeostasis, i.e., proteostasis. By facilitating the timely destruction of aberrant proteins, these complementary pathways keep the intracellular environment free of inherently toxic protein aggregates. Chemical interference with the UPS or autophagy has emerged as a viable strategy for therapeutically targeting malignant cells which, owing to their hyperactive state, heavily rely on the sanitizing activity of these proteolytic systems. Here, we report on the discovery of CBK79, a novel compound that impairs both protein degradation by the UPS and autophagy. While CBK79 was identified in a high-content screen for drug-like molecules that inhibit the UPS, subsequent analysis revealed that this compound also compromises autophagic degradation of long-lived proteins. We show that CBK79 induces non-canonical lipidation of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 beta) that requires ATG16L1 but is independent of the ULK1 (unc-51 like autophagy activating kinase 1) and class III phosphatidylinositol 3-kinase (PtdIns3K) complexes. Thermal preconditioning of cells prevented CBK79-induced UPS impairment but failed to restore autophagy, indicating that activation of stress responses does not allow cells to bypass the inhibitory effect of CBK79 on autophagy. The identification of a small molecule that simultaneously impairs the two main proteolytic systems for protein quality control provides a starting point for the development of a novel class of proteostasis-targeting drugs.


Assuntos
Complexo de Endopeptidases do Proteassoma , Ubiquitina , Autofagia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitina/metabolismo
7.
Neurooncol Adv ; 3(1): vdab152, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34765974

RESUMO

BACKGROUND: Increased membrane trafficking is observed in numerous cancer types, including glioblastoma. Targeting the oncogenic driven acquired alterations in membrane trafficking by synthetic cationic amphiphilic small molecules has recently been shown to induce death of glioblastoma cells, although the molecular targets are unknown. METHODS: The mechanism of action of the cationic amphiphilic drug Vacquinol-1 (Vacq1)-induced cytotoxicity was investigated using cell biology, biochemistry, functional experiments, chemical biology, unbiased antibody-based post-translation modification profiling, and mass spectrometry-based chemical proteomic analysis on patient-derived glioblastoma cells. RESULTS: Vacq1 induced two types of abnormal endolysosomal vesicles, enlarged vacuoles and acidic vesicle organelles (AVOs). Mechanistically, enlarged vacuoles were formed by the impairment of lysosome reformation through the direct interaction and inhibition of calmodulin (CaM) by Vacq1, while AVO formation was induced by Vacq1 accumulation and acidification in the endosomal compartments through its activation of the v-ATPase. As a consequence of v-ATPase activation, cellular ATP consumption markedly increased, causing cellular energy shortage and cytotoxicity. This effect of Vacq1 was exacerbated by its inhibitory effects on calmodulin, causing lysosomal depletion and a failure of acidic vesicle organelle clearance. CONCLUSION: Our study identifies the targets of Vacq1 and the mechanisms underlying its selective cytotoxicity in glioblastoma cells. The dual function of Vacq1 sets in motion a glioblastoma-specific vicious cycle of ATP consumption resulting in cellular energy crisis and cell death.

8.
Cell Death Dis ; 12(10): 914, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615851

RESUMO

Malignant cells display an increased sensitivity towards drugs that reduce the function of the ubiquitin-proteasome system (UPS), which is the primary proteolytic system for destruction of aberrant proteins. Here, we report on the discovery of the bioactivatable compound CBK77, which causes an irreversible collapse of the UPS, accompanied by a general accumulation of ubiquitylated proteins and caspase-dependent cell death. CBK77 caused accumulation of ubiquitin-dependent, but not ubiquitin-independent, reporter substrates of the UPS, suggesting a selective effect on ubiquitin-dependent proteolysis. In a genome-wide CRISPR interference screen, we identified the redox enzyme NAD(P)H:quinone oxidoreductase 1 (NQO1) as a critical mediator of CBK77 activity, and further demonstrated its role as the compound bioactivator. Through affinity-based proteomics, we found that CBK77 covalently interacts with ubiquitin. In vitro experiments showed that CBK77-treated ubiquitin conjugates were less susceptible to disassembly by deubiquitylating enzymes. In vivo efficacy of CBK77 was validated by reduced growth of NQO1-proficient human adenocarcinoma cells in nude mice treated with CBK77. This first-in-class NQO1-activatable UPS inhibitor suggests that it may be possible to exploit the intracellular environment in malignant cells for leveraging the impact of compounds that impair the UPS.


Assuntos
NAD(P)H Desidrogenase (Quinona)/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/antagonistas & inibidores , Animais , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Enzimas Desubiquitinantes/metabolismo , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Camundongos Nus , Fenótipo , Inibidores de Proteassoma/química , Inibidores de Proteassoma/farmacologia , Proteínas Recombinantes/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Especificidade por Substrato/efeitos dos fármacos , Ubiquitina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
9.
J Med Chem ; 63(8): 3915-3934, 2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32212728

RESUMO

Human dihydroorotate dehydrogenase (DHODH), an enzyme in the de novo pyrimidine synthesis pathway, is a target for the treatment of rheumatoid arthritis and multiple sclerosis and is re-emerging as an attractive target for cancer therapy. Here we describe the optimization of recently identified tetrahydroindazoles (HZ) as DHODH inhibitors. Several of the HZ analogues synthesized in this study are highly potent inhibitors of DHODH in an enzymatic assay, while also inhibiting cancer cell growth and viability and activating p53-dependent transcription factor activity in a reporter cell assay. Furthermore, we demonstrate the specificity of the compounds toward the de novo pyrimidine synthesis pathway through supplementation with an excess of uridine. We also show that induction of the DNA damage marker γ-H2AX after DHODH inhibition is preventable by cotreatment with the pan-caspase inhibitor Z-VAD-FMK. Additional solubility and in vitro metabolic stability profiling revealed compound 51 as a favorable candidate for preclinical efficacy studies.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Indazóis/química , Indazóis/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Di-Hidro-Orotato Desidrogenase , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Indazóis/farmacologia , Camundongos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo
10.
Cancer Cell Int ; 18: 147, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30263014

RESUMO

BACKGROUND: Drug screening for the identification of compounds with anticancer activity is commonly performed using cell lines cultured under normal oxygen pressure and physiological pH. However, solid tumors are characterized by a microenvironment with limited access to nutrients, reduced oxygen supply and acidosis. Tumor hypoxia and acidosis have been identified as important drivers of malignant progression and contribute to multicellular resistance to different forms of therapy. Tumor acidosis represents an important mechanism mediating drug resistance thus the identification of drugs active on acid-adapted cells may improve the efficacy of cancer therapy. METHODS: Here, we characterized human colon carcinoma cells (HCT116) chronically adapted to grow at pH 6.8 and used them to screen the Prestwick drug library for cytotoxic compounds. Analysis of gene expression profiles in parental and low pH-adapted cells showed several differences relating to cell cycle, metabolism and autophagy. RESULTS: The screen led to the identification of several compounds which were further selected for their preferential cytotoxicity towards acid-adapted cells. Amongst 11 confirmed hits, we primarily focused our investigation on the benzoporphyrin derivative Verteporfin (VP). VP significantly reduced viability in low pH-adapted HCT116 cells as compared to parental HCT116 cells and normal immortalized epithelial cells. The cytotoxic activity of VP was enhanced by light activation and acidic pH culture conditions, likely via increased acid-dependent drug uptake. VP displayed the unique property to cause light-dependent cross-linking of proteins and resulted in accumulation of polyubiquitinated proteins without inducing inhibition of the proteasome. CONCLUSIONS: Our study provides an example and a tool to identify anticancer drugs targeting acid-adapted cancer cells.

11.
Nat Commun ; 9(1): 2071, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29789663

RESUMO

The original PDF version of this Article listed the authors as "Marcus J.G.W. Ladds," where it should have read "Marcus J. G. W. Ladds, Ingeborg M. M. van Leeuwen, Catherine J. Drummond et al.#".Also in the PDF version, it was incorrectly stated that "Correspondence and requests for materials should be addressed to S. Lín.", instead of the correct "Correspondence and requests for materials should be addressed to S. Laín."This has been corrected in the PDF version of the Article. The HTML version was correct from the time of publication.

12.
Chem Biol Drug Des ; 92(1): 1255-1271, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29500863

RESUMO

Tartrate-resistant acid phosphatase (TRAP/ACP5) occurs as two isoforms-TRAP 5a with low enzymatic activity due to a loop interacting with the active site and the more active TRAP isoform 5b generated upon proteolytic cleavage of this loop. TRAP has been implicated in several diseases, including cancer. Thus, this study set out to identify small-molecule inhibitors of TRAP activity. A microplate-based enzymatic assay for TRAP 5b was applied in a screen of 30,315 compounds, resulting in the identification of 90 primary hits. After removal of promiscuous compounds, unwanted groups, and false positives by orthogonal assays and three-concentration validation, the properties of 52 compounds were further investigated to better understand their mechanism of action. Full-concentration-response curves for these compounds were established under different enzyme concentrations and (pre)incubation times to remove compounds with inconsistent results and low potencies. Full-concentration-response curves were also performed for both isoforms, to examine isoform prevalence. Filtering led to six prioritized compounds, representing different clusters. One of these, CBK289001 or (6S)-6-[3-(2H-1,3-benzodioxol-5-yl)-1,2,4-oxadiazol-5-yl]-N-(propan-2-yl)-1H,4H,5H,6H,7H-imidazo[4,5-c]pyridine-5-carboxamide, demonstrated efficacy in a migration assay and IC50 values from 4 to 125 µm. Molecular docking studies and analog testing were performed around CBK289001 to provide openings for further improvement toward more potent blockers of TRAP activity.


Assuntos
Inibidores Enzimáticos/química , Bibliotecas de Moléculas Pequenas/química , Fosfatase Ácida Resistente a Tartarato/antagonistas & inibidores , Sítios de Ligação , Domínio Catalítico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Simulação de Acoplamento Molecular , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Fosfatase Ácida Resistente a Tartarato/genética , Fosfatase Ácida Resistente a Tartarato/metabolismo
13.
Nat Commun ; 9(1): 1107, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29549331

RESUMO

The development of non-genotoxic therapies that activate wild-type p53 in tumors is of great interest since the discovery of p53 as a tumor suppressor. Here we report the identification of over 100 small-molecules activating p53 in cells. We elucidate the mechanism of action of a chiral tetrahydroindazole (HZ00), and through target deconvolution, we deduce that its active enantiomer (R)-HZ00, inhibits dihydroorotate dehydrogenase (DHODH). The chiral specificity of HZ05, a more potent analog, is revealed by the crystal structure of the (R)-HZ05/DHODH complex. Twelve other DHODH inhibitor chemotypes are detailed among the p53 activators, which identifies DHODH as a frequent target for structurally diverse compounds. We observe that HZ compounds accumulate cancer cells in S-phase, increase p53 synthesis, and synergize with an inhibitor of p53 degradation to reduce tumor growth in vivo. We, therefore, propose a strategy to promote cancer cell killing by p53 instead of its reversible cell cycle arresting effect.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Indazóis/farmacologia , Neoplasias/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Proteína Supressora de Tumor p53/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Di-Hidro-Orotato Desidrogenase , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Proteólise/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética
14.
PLoS One ; 12(6): e0178844, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28636670

RESUMO

Activation of Signal Transducer and Activator of Transcription 3 (STAT3) has been linked to several processes that are critical for oncogenic transformation, cancer progression, cancer cell proliferation, survival, drug resistance and metastasis. Inhibition of STAT3 signaling has shown a striking ability to inhibit cancer cell growth and therefore, STAT3 has become a promising target for anti-cancer drug development. The aim of this study was to identify novel inhibitors of STAT-dependent gene transcription. A cellular reporter-based system for monitoring STAT3 transcriptional activity was developed which was suitable for high-throughput screening (Z' = 0,8). This system was used to screen a library of 28,000 compounds (the ENAMINE Drug-Like Diversity Set). Following counter-screenings and toxicity studies, we identified four hit compounds that were subjected to detailed biological characterization. Of the four hits, KI16 stood out as the most promising compound, inhibiting STAT3 phosphorylation and transcriptional activity in response to IL6 stimulation. In silico docking studies showed that KI16 had favorable interactions with the STAT3 SH2 domain, however, no inhibitory activity could be observed in the STAT3 fluorescence polarization assay. KI16 inhibited cell viability preferentially in STAT3-dependent cell lines. Taken together, using a targeted, cell-based approach, novel inhibitors of STAT-driven transcriptional activity were discovered which are interesting leads to pursue further for the development of anti-cancer therapeutic agents.


Assuntos
Antineoplásicos/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Fator de Transcrição STAT3/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Transdução de Sinais , Bibliotecas de Moléculas Pequenas/química , Células Tumorais Cultivadas
15.
Org Biomol Chem ; 15(21): 4644-4654, 2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28513744

RESUMO

A high-affinity polypeptide conjugate 4-C25L22-DQ, has been developed for the molecular recognition of the human C-reactive protein, CRP, a well-known inflammation biomarker. CRP is one of the most frequently quantified targets in diagnostic applications and a target in drug development. With the exception of antibodies, most molecular constructs take advantage of the known affinity for CRP of phosphocholine that depends on Ca2+ for its ability to bind. 4-C25L22-DQ which is unrelated to phosphocholine binds in the absence of Ca2+ with a dissociation constant of 760 nM, an order of magnitude lower than that of phosphocholine, the KD of which is 5 µM. The small organic molecule 2-oxo-1,2-dihydroquinoline-8-carboxylic acid (DQ) was designed based on the structural similarities between three hits from a set of compounds selected from a building block collection and evaluated with regards to affinity for CRP by NMR spectroscopy. 4-C25L22-DQ was shown in a competition experiment to bind CRP three orders of magnitude more strongly than DQ itself, and in a pull-down experiment 4-C25L22-DQ was shown to extract CRP from human serum. The development of a robust and phosphocholine-independent recognition element provides unprecedented opportunities in bioanalytical applications in vivo and in vitro under conditions where the concentration of Ca2+ ions is low, or where Ca2+ binding agents such as EDTA or heparin are needed to prevent blood coagulation. The identification from a compound library of a small organic molecule and its conjugation to a small set of polypeptides, none of which were previously known to bind CRP, illustrates a convenient and general route to selective high-affinity binders for proteins with dissociation constants in the µM to nM range for which no small molecule ligands are known.


Assuntos
Proteína C-Reativa/metabolismo , Fosforilcolina/metabolismo , Sequência de Aminoácidos , Proteína C-Reativa/química , Desenho de Fármacos , Humanos , Modelos Moleculares , Conformação Proteica
16.
Cancer Res ; 77(7): 1741-1752, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28087597

RESUMO

Glioma-initiating cells (GIC) are considered the underlying cause of recurrences of aggressive glioblastomas, replenishing the tumor population and undermining the efficacy of conventional chemotherapy. Here we report the discovery that inhibiting T-type voltage-gated Ca2+ and KCa channels can effectively induce selective cell death of GIC and increase host survival in an orthotopic mouse model of human glioma. At present, the precise cellular pathways affected by the drugs affecting these channels are unknown. However, using cell-based assays and integrated proteomics, phosphoproteomics, and transcriptomics analyses, we identified the downstream signaling events these drugs affect. Changes in plasma membrane depolarization and elevated intracellular Na+, which compromised Na+-dependent nutrient transport, were documented. Deficits in nutrient deficit acted in turn to trigger the unfolded protein response and the amino acid response, leading ultimately to nutrient starvation and GIC cell death. Our results suggest new therapeutic targets to attack aggressive gliomas. Cancer Res; 77(7); 1741-52. ©2017 AACR.


Assuntos
Aminoácidos/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo T/fisiologia , Glioma/tratamento farmacológico , Canais de Potássio Cálcio-Ativados/antagonistas & inibidores , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Animais , Transporte Biológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Morte Celular , Linhagem Celular Tumoral , Di-Hidropiridinas/farmacologia , Glioma/metabolismo , Glioma/patologia , Humanos , Camundongos , Micotoxinas/farmacologia , Células-Tronco Neoplásicas/patologia , Proteômica , Sódio/metabolismo
17.
Nat Commun ; 7: 11040, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-27010513

RESUMO

Target engagement is a critical factor for therapeutic efficacy. Assessment of compound binding to native target proteins in live cells is therefore highly desirable in all stages of drug discovery. We report here the first compound library screen based on biophysical measurements of intracellular target binding, exemplified by human thymidylate synthase (TS). The screen selected accurately for all the tested known drugs acting on TS. We also identified TS inhibitors with novel chemistry and marketed drugs that were not previously known to target TS, including the DNA methyltransferase inhibitor decitabine. By following the cellular uptake and enzymatic conversion of known drugs we correlated the appearance of active metabolites over time with intracellular target engagement. These data distinguished a much slower activation of 5-fluorouracil when compared with nucleoside-based drugs. The approach establishes efficient means to associate drug uptake and activation with target binding during drug discovery.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacologia , Fluoruracila/metabolismo , Espaço Intracelular/metabolismo , Timidilato Sintase/antagonistas & inibidores , Ativação Metabólica/efeitos dos fármacos , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Bioensaio , Desaminação/efeitos dos fármacos , Decitabina , Humanos , Células K562 , Cinética , Fosforilação/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/análise , Bibliotecas de Moléculas Pequenas/farmacologia , Timidilato Sintase/metabolismo , Fatores de Tempo
18.
J Pharmacol Exp Ther ; 355(1): 108-16, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26283693

RESUMO

Cysteinyl leukotrienes (cys-LTs) are lipid mediators of inflammation. The enzyme catalyzing synthesis of cys-LTs, leukotriene C4 synthase (LTC4S), is considered an important drug target. Here we report the synthesis and characterization of three tandem benzophenone amino pyridines as inhibitors of LTC4S in vitro and in vivo. The inhibitors were characterized in vitro using recombinant human LTC4S, MonoMac 6 cells, and a panel of peripheral human immune cells. In vivo, the compounds were tested in the Zymosan A-induced peritonitis mouse model. The molecules, denoted TK04, TK04a, and TK05, were potent and selective inhibitors of LTC4S with IC50 values of 116, 124, and 95 nM, respectively. Molecular docking revealed binding in a hydrophobic crevice between two enzyme monomers and interaction with two catalytic residues, Arg104 and Arg31. The TK compounds potently inhibited cys-LT biosynthesis in immune cells. In coincubations of platelets and polymorphonuclear leukocytes, inhibition of LTC4S led to shunting of LTA4 toward anti-inflammatory lipoxin A4, which was significantly enhanced by simultaneous inhibition of LTA4H. Finally, we found that TK05 (6 mg⋅kg(-1)⋅body weight) reduces LTE4 levels in peritoneal lavage fluid by 88% and significantly decreases vascular permeability in vivo. Our findings indicate that the TK compounds are valuable experimental tools in eicosanoid research in vitro and in vivo. Their chemical structures may serve as leads for further inhibitor design. Novel drugs depleting cys-LT production could be beneficial for treatment of inflammatory diseases associated with overexpression of LTC4S.


Assuntos
Benzofenonas/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Glutationa Transferase/antagonistas & inibidores , Piridinas/química , Piridinas/farmacologia , Animais , Plaquetas/efeitos dos fármacos , Plaquetas/enzimologia , Diferenciação Celular/efeitos dos fármacos , Descoberta de Drogas , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Eosinófilos/efeitos dos fármacos , Eosinófilos/enzimologia , Sangue Fetal/citologia , Glutationa Transferase/química , Glutationa Transferase/metabolismo , Humanos , Masculino , Mastócitos/citologia , Mastócitos/efeitos dos fármacos , Mastócitos/enzimologia , Camundongos , Simulação de Acoplamento Molecular , Monócitos/efeitos dos fármacos , Monócitos/enzimologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/enzimologia , Conformação Proteica , Piridinas/síntese química , Piridinas/metabolismo , Especificidade por Substrato
19.
J Med Chem ; 56(16): 6457-66, 2013 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-23879381

RESUMO

The cysteine biosynthetic pathway is absent in humans but essential in microbial pathogens, suggesting that it provides potential targets for the development of novel antibacterial compounds. CysK1 is a pyridoxalphosphate-dependent O-acetyl sulfhydrylase, which catalyzes the formation of l-cysteine from O-acetyl serine and hydrogen sulfide. Here we report nanomolar thiazolidine inhibitors of Mycobacterium tuberculosis CysK1 developed by rational inhibitor design. The thiazolidine compounds were discovered using the crystal structure of a CysK1-peptide inhibitor complex as template. Pharmacophore modeling and subsequent in vitro screening resulted in an initial hit compound 2 (IC50 of 103.8 nM), which was subsequently optimized by a combination of protein crystallography, modeling, and synthetic chemistry. Hit expansion of 2 by chemical synthesis led to improved thiazolidine inhibitors with an IC50 value of 19 nM for the best compound, a 150-fold higher potency than the natural peptide inhibitor (IC50 2.9 µM).


Assuntos
Cisteína Sintase/antagonistas & inibidores , Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Mycobacterium tuberculosis/enzimologia , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...