Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mater Sci Eng C Mater Biol Appl ; 130: 112457, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34702533

RESUMO

Probiotic bacteria are able to produce antimicrobial substances as well as to synthesize green metal nanoparticles (NPs). New antimicrobial and antibiofilm coatings (LAB-ZnO NPs), composed of Lactobacillus strains and green ZnO NPs, were employed for the modification of gum Arabic-polyvinyl alcohol-polycaprolactone nanofibers matrix (GA-PVA-PCL) against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. The physicochemical properties of ZnO NPs biologically synthesized by L. plantarum and L. acidophilus, LAB-ZnO NPs hybrids and LAB-ZnO NPs@GA-PVA-PCL were studied using FE-SEM, EDX, EM, FTIR, XRD and ICP-OES. The morphology of LAB-ZnO NPs hybrids was spherical in range of 4.56-91.61 nm with an average diameter about 34 nm. The electrospun GA-PVA-PCL had regular, continuous and without beads morphology in the scale of nanometer and micrometer with an average diameter of 565 nm. Interestingly, the LAB not only acted as a biosynthesizer in the green synthesis of ZnO NPs but also synergistically enhanced the antimicrobial and antibiofilm efficacy of LAB-ZnO NPs@GA-PVA-PCL. Moreover, the low cytotoxicity of ZnO NPs and ZnO NPs@GA-PVA-PCL on the mouse embryonic fibroblasts cell line led to make them biocompatible. These results suggest that LAB-ZnO NPs@GA-PVA-PCL has potential as a safe promising antimicrobial and antibiofilm dressing in wound healing against pathogens.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Óxido de Zinco , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Bandagens , Biofilmes , Fibroblastos , Lactobacillus , Camundongos , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA