Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(28): e2402872121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968126

RESUMO

Bioengineering of plant immune receptors has emerged as a key strategy for generating novel disease resistance traits to counteract the expanding threat of plant pathogens to global food security. However, current approaches are limited by rapid evolution of plant pathogens in the field and may lack durability when deployed. Here, we show that the rice nucleotide-binding, leucine-rich repeat (NLR) immune receptor Pik-1 can be engineered to respond to a conserved family of effectors from the multihost blast fungus pathogen Magnaporthe oryzae. We switched the effector binding and response profile of the Pik NLR from its cognate rice blast effector AVR-Pik to the host-determining factor pathogenicity toward weeping lovegrass 2 (Pwl2) by installing a putative host target, OsHIPP43, in place of the native integrated heavy metal-associated domain (generating Pikm-1OsHIPP43). This chimeric receptor also responded to other PWL alleles from diverse blast isolates. The crystal structure of the Pwl2/OsHIPP43 complex revealed a multifaceted, robust interface that cannot be easily disrupted by mutagenesis, and may therefore provide durable, broad resistance to blast isolates carrying PWL effectors in the field. Our findings highlight how the host targets of pathogen effectors can be used to bioengineer recognition specificities that have more robust properties compared to naturally evolved disease resistance genes.


Assuntos
Proteínas Fúngicas , Proteínas NLR , Oryza , Doenças das Plantas , Proteínas de Plantas , Oryza/microbiologia , Oryza/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Proteínas NLR/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/imunologia , Proteínas de Plantas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/imunologia , Interações Hospedeiro-Patógeno/imunologia , Resistência à Doença/imunologia , Imunidade Vegetal , Bioengenharia/métodos , Magnaporthe/imunologia , Magnaporthe/genética , Magnaporthe/metabolismo , Ligação Proteica , Receptores Imunológicos/metabolismo , Ascomicetos
2.
Sci Adv ; 9(18): eadg3861, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37134163

RESUMO

Parasites counteract host immunity by suppressing helper nucleotide binding and leucine-rich repeat (NLR) proteins that function as central nodes in immune receptor networks. Understanding the mechanisms of immunosuppression can lead to strategies for bioengineering disease resistance. Here, we show that a cyst nematode virulence effector binds and inhibits oligomerization of the helper NLR protein NRC2 by physically preventing intramolecular rearrangements required for activation. An amino acid polymorphism at the binding interface between NRC2 and the inhibitor is sufficient for this helper NLR to evade immune suppression, thereby restoring the activity of multiple disease resistance genes. This points to a potential strategy for resurrecting disease resistance in crop genomes.


Assuntos
Resistência à Doença , Proteínas de Plantas , Humanos , Proteínas de Plantas/metabolismo , Resistência à Doença/genética , Imunidade Vegetal/genética , Proteínas NLR/genética , Proteínas NLR/metabolismo , Bioengenharia
3.
PLoS Biol ; 21(4): e3002052, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37040332

RESUMO

Wheat, one of the most important food crops, is threatened by a blast disease pandemic. Here, we show that a clonal lineage of the wheat blast fungus recently spread to Asia and Africa following two independent introductions from South America. Through a combination of genome analyses and laboratory experiments, we show that the decade-old blast pandemic lineage can be controlled by the Rmg8 disease resistance gene and is sensitive to strobilurin fungicides. However, we also highlight the potential of the pandemic clone to evolve fungicide-insensitive variants and sexually recombine with African lineages. This underscores the urgent need for genomic surveillance to track and mitigate the spread of wheat blast outside of South America and to guide preemptive wheat breeding for blast resistance.


Assuntos
Pandemias , Triticum , Triticum/genética , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Genômica , Fungos
4.
Science ; 379(6635): 934-939, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36862785

RESUMO

Plant pathogens cause recurrent epidemics, threatening crop yield and global food security. Efforts to retool the plant immune system have been limited to modifying natural components and can be nullified by the emergence of new pathogen strains. Made-to-order synthetic plant immune receptors provide an opportunity to tailor resistance to pathogen genotypes present in the field. In this work, we show that plant nucleotide-binding, leucine-rich repeat immune receptors (NLRs) can be used as scaffolds for nanobody (single-domain antibody fragment) fusions that bind fluorescent proteins (FPs). These fusions trigger immune responses in the presence of the corresponding FP and confer resistance against plant viruses expressing FPs. Because nanobodies can be raised against most molecules, immune receptor-nanobody fusions have the potential to generate resistance against plant pathogens and pests delivering effectors inside host cells.


Assuntos
Resistência à Doença , Doenças das Plantas , Receptores Imunológicos , Anticorpos de Domínio Único , Resistência à Doença/imunologia , Genótipo , Receptores Imunológicos/imunologia , Anticorpos de Domínio Único/imunologia , Doenças das Plantas/imunologia , Doenças das Plantas/prevenção & controle , Proteínas Luminescentes
5.
PLoS Genet ; 19(1): e1010500, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36656829

RESUMO

The NRC immune receptor network has evolved in asterid plants from a pair of linked genes into a genetically dispersed and phylogenetically structured network of sensor and helper NLR (nucleotide-binding domain and leucine-rich repeat-containing) proteins. In some species, such as the model plant Nicotiana benthamiana and other Solanaceae, the NRC (NLR-REQUIRED FOR CELL DEATH) network forms up to half of the NLRome, and NRCs are scattered throughout the genome in gene clusters of varying complexities. Here, we describe NRCX, an atypical member of the NRC family that lacks canonical features of these NLR helper proteins, such as a functional N-terminal MADA motif and the capacity to trigger autoimmunity. In contrast to other NRCs, systemic gene silencing of NRCX in N. benthamiana markedly impairs plant growth resulting in a dwarf phenotype. Remarkably, dwarfism of NRCX silenced plants is partially dependent on NRCX paralogs NRC2 and NRC3, but not NRC4. Despite its negative impact on plant growth when silenced systemically, spot gene silencing of NRCX in mature N. benthamiana leaves doesn't result in visible cell death phenotypes. However, alteration of NRCX expression modulates the hypersensitive response mediated by NRC2 and NRC3 in a manner consistent with a negative role for NRCX in the NRC network. We conclude that NRCX is an atypical member of the NRC network that has evolved to contribute to the homeostasis of this genetically unlinked NLR network.


Assuntos
Proteínas NLR , Nicotiana , Proteínas NLR/genética , Proteínas NLR/metabolismo , Nicotiana/genética , Imunidade Vegetal/genética , Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Doenças das Plantas
6.
PLoS Genet ; 18(9): e1010414, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36137148

RESUMO

Cell surface pattern recognition receptors (PRRs) activate immune responses that can include the hypersensitive cell death. However, the pathways that link PRRs to the cell death response are poorly understood. Here, we show that the cell surface receptor-like protein Cf-4 requires the intracellular nucleotide-binding domain leucine-rich repeat containing receptor (NLR) NRC3 to trigger a confluent cell death response upon detection of the fungal effector Avr4 in leaves of Nicotiana benthamiana. This NRC3 activity requires an intact N-terminal MADA motif, a conserved signature of coiled-coil (CC)-type plant NLRs that is required for resistosome-mediated immune responses. A chimeric protein with the N-terminal α1 helix of Arabidopsis ZAR1 swapped into NRC3 retains the capacity to mediate Cf-4 hypersensitive cell death. Pathogen effectors acting as suppressors of NRC3 can suppress Cf-4-triggered hypersensitive cell-death. Our findings link the NLR resistosome model to the hypersensitive cell death caused by a cell surface PRR.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte , Morte Celular/genética , Leucina , Proteínas NLR/metabolismo , Nucleotídeos/metabolismo , Doenças das Plantas/genética , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Proteínas Recombinantes de Fusão/metabolismo
7.
Plant Physiol ; 188(1): 70-80, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34633454

RESUMO

Nicotiana benthamiana has emerged as a complementary experimental system to Arabidopsis thaliana. It enables fast-forward in vivo analyses primarily through transient gene expression and is particularly popular in the study of plant immunity. Recently, our understanding of nucleotide-binding leucine-rich repeat (NLR) plant immune receptors has greatly advanced following the discovery of the Arabidopsis HOPZ-ACTIVATED RESISTANCE1 (ZAR1) resistosome. Here, we describe a vector system of 72 plasmids that enables functional studies of the ZAR1 resistosome in N. benthamiana. We showed that ZAR1 stands out among the coiled coil class of NLRs (CC-NLRs) for being highly conserved across distantly related dicot plant species and confirmed NbZAR1 as the N. benthamiana ortholog of Arabidopsis ZAR1. Effector-activated and autoactive NbZAR1 triggers the cell death response in N. benthamiana and this activity is dependent on a functional N-terminal α1 helix. C-terminally tagged NbZAR1 remains functional in N. benthamiana, thus enabling cell biology and biochemical studies in this plant system. We conclude that the NbZAR1 open source pZA plasmid collection forms an additional experimental system to Arabidopsis for in planta resistosome studies.


Assuntos
Arabidopsis/genética , Arabidopsis/imunologia , Resistência à Doença/genética , Nicotiana/genética , Nicotiana/imunologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Arabidopsis/microbiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Nicotiana/microbiologia
8.
Elife ; 102021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34288868

RESUMO

A subset of plant NLR immune receptors carry unconventional integrated domains in addition to their canonical domain architecture. One example is rice Pik-1 that comprises an integrated heavy metal-associated (HMA) domain. Here, we reconstructed the evolutionary history of Pik-1 and its NLR partner, Pik-2, and tested hypotheses about adaptive evolution of the HMA domain. Phylogenetic analyses revealed that the HMA domain integrated into Pik-1 before Oryzinae speciation over 15 million years ago and has been under diversifying selection. Ancestral sequence reconstruction coupled with functional studies showed that two Pik-1 allelic variants independently evolved from a weakly binding ancestral state to high-affinity binding of the blast fungus effector AVR-PikD. We conclude that for most of its evolutionary history the Pik-1 HMA domain did not sense AVR-PikD, and that different Pik-1 receptors have recently evolved through distinct biochemical paths to produce similar phenotypic outcomes. These findings highlight the dynamic nature of the evolutionary mechanisms underpinning NLR adaptation to plant pathogens.


Assuntos
Fungos/imunologia , Oryza/genética , Oryza/imunologia , Doenças das Plantas/imunologia , Receptores Imunológicos/metabolismo , Alelos , Genes de Plantas/genética , Genótipo , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Metais Pesados , Modelos Moleculares , Filogenia , Doenças das Plantas/microbiologia , Proteínas de Plantas , Domínios Proteicos , Alinhamento de Sequência , Análise de Sequência de Proteína
9.
PLoS Genet ; 17(2): e1009386, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33591993

RESUMO

Supernumerary mini-chromosomes-a unique type of genomic structural variation-have been implicated in the emergence of virulence traits in plant pathogenic fungi. However, the mechanisms that facilitate the emergence and maintenance of mini-chromosomes across fungi remain poorly understood. In the blast fungus Magnaporthe oryzae (Syn. Pyricularia oryzae), mini-chromosomes have been first described in the early 1990s but, until very recently, have been overlooked in genomic studies. Here we investigated structural variation in four isolates of the blast fungus M. oryzae from different grass hosts and analyzed the sequences of mini-chromosomes in the rice, foxtail millet and goosegrass isolates. The mini-chromosomes of these isolates turned out to be highly diverse with distinct sequence composition. They are enriched in repetitive elements and have lower gene density than core-chromosomes. We identified several virulence-related genes in the mini-chromosome of the rice isolate, including the virulence-related polyketide synthase Ace1 and two variants of the effector gene AVR-Pik. Macrosynteny analyses around these loci revealed structural rearrangements, including inter-chromosomal translocations between core- and mini-chromosomes. Our findings provide evidence that mini-chromosomes emerge from structural rearrangements and segmental duplication of core-chromosomes and might contribute to adaptive evolution of the blast fungus.


Assuntos
Ascomicetos/genética , Cromossomos Fúngicos/genética , Rearranjo Gênico/genética , Genoma Fúngico/genética , Genômica/métodos , Ascomicetos/patogenicidade , Eleusine/genética , Eleusine/microbiologia , Evolução Molecular , Genes Fúngicos/genética , Variação Genética , Interações Hospedeiro-Patógeno/genética , Milhetes/genética , Milhetes/microbiologia , Oryza/genética , Oryza/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Virulência/genética
10.
Microbiol Resour Announc ; 9(23)2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32499368

RESUMO

The draft genome sequences of plant-associated Rhodococcus spp. from Tunisia are reported here. Two Rhodococcus fascians strains were obtained from almond rootstocks, and one Rhodococcus kroppenstedtii strain was obtained from a pistachio tree. The fourth Rhodococcus sp. strain was isolated from an ornamental plant.

11.
Mol Plant Microbe Interact ; 33(8): 1032-1035, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32460610

RESUMO

The blast fungus Magnaporthe oryzae (syn. Pyricularia oryzae) is a destructive plant pathogen that can infect about 50 species of both wild and cultivated grasses, including important crops such as rice and wheat. M. oryzae is composed of genetically differentiated lineages that tend to infect specific host genera. To date, most studies of M. oryzae effectors have focused on the rice-infecting lineage. We describe a clone resource of 195 effectors of Magnaporthe species predicted from all the major host-specific lineages. These clones are freely available as Golden Gate-compatible entry plasmids. Our aim is to provide the community with an open source effector clone library to be used in a variety of functional studies. We hope that this resource will encourage studies of M. oryzae effectors on diverse host species.


Assuntos
Magnaporthe , Doenças das Plantas/microbiologia , Magnaporthe/genética , Magnaporthe/patogenicidade , Oryza/microbiologia , Poaceae/microbiologia
12.
Elife ; 82019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31774397

RESUMO

The molecular codes underpinning the functions of plant NLR immune receptors are poorly understood. We used in vitro Mu transposition to generate a random truncation library and identify the minimal functional region of NLRs. We applied this method to NRC4-a helper NLR that functions with multiple sensor NLRs within a Solanaceae receptor network. This revealed that the NRC4 N-terminal 29 amino acids are sufficient to induce hypersensitive cell death. This region is defined by the consensus MADAxVSFxVxKLxxLLxxEx (MADA motif) that is conserved at the N-termini of NRC family proteins and ~20% of coiled-coil (CC)-type plant NLRs. The MADA motif matches the N-terminal α1 helix of Arabidopsis NLR protein ZAR1, which undergoes a conformational switch during resistosome activation. Immunoassays revealed that the MADA motif is functionally conserved across NLRs from distantly related plant species. NRC-dependent sensor NLRs lack MADA sequences indicating that this motif has degenerated in sensor NLRs over evolutionary time.


Assuntos
Proteínas NLR/química , Proteínas NLR/imunologia , Imunidade Vegetal/imunologia , Receptores Imunológicos/imunologia , Arabidopsis/genética , Arabidopsis/imunologia , Proteínas de Arabidopsis , Proteínas de Transporte , Morte Celular , Técnicas de Inativação de Genes , Modelos Moleculares , Proteínas NLR/classificação , Proteínas NLR/genética , Filogenia , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Conformação Proteica , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , Análise de Sequência de Proteína , Nicotiana/genética , Nicotiana/imunologia
13.
Front Plant Sci ; 7: 741, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27375627

RESUMO

Chicory (Cichorium intybus) accumulates caffeic acid esters with important significance for human health. In this study, we aim at a better understanding of the biochemical pathway of these bioactive compounds. Detailed metabolic analysis reveals that C. intybus predominantly accumulates caftaric and chicoric acids in leaves, whereas isochlorogenic acid (3,5-diCQA) was almost exclusively accumulated in roots. Chlorogenic acid (3-CQA) was equally distributed in all organs. Interestingly, distribution of the four compounds was related to leaf age. Induction with methyljasmonate (MeJA) of root cell suspension cultures results in an increase of 3-CQA and 3,5-diCQA contents. Expressed sequence tag libraries were screened using members of the BAHD family identified in Arabidopsis and tobacco as baits. The full-length cDNAs of five genes were isolated. Predicted amino acid sequence analyses revealed typical features of BAHD family members. Biochemical characterization of the recombinant proteins expressed in Escherichia coli showed that two genes encode HCTs (hydroxycinnamoyl-CoA:shikimate/quinate hydroxycinnamoyltransferases, HCT1 and HCT2) whereas, three genes encode HQTs (hydroxycinnamoyl-CoA:quinate hydroxycinnamoyltransferases, HQT1, HQT2, and HQT3). These results totally agreed with the phylogenetic analysis done with the predicted amino acid sequences. Quantitative real-time polymerase chain reaction analysis of gene expression indicated that HQT3, HCT1, and HCT2 might be more directly associated with CQA accumulation in cell culture in response to MeJA elicitation. Transient expression of HCT1 and HQT1 in tobacco resulted in a higher production of 3-CQA. All together these data confirm the involvement of functionally redundant genes in 3-CQA and related compound synthesis in the Asteraceae family.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA