Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 30(14): 1664-80, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21472018

RESUMO

Wilms' tumor (WT), the most frequent renal solid tumor in children, has been linked to aberrant Wnt signaling. Herein, we demonstrate that different WTs can be grouped according to either sensitivity or resistance to an antibody (Ab) specific to frizzled7 (FZD7), a Wnt receptor. In the FZD7-sensitive WT phenotype, the Ab induced cell death of the FZD7(+) fraction, which in turn depleted primary WT cultures of their clonogenic and sphere-forming cells and decreased in vivo proliferation and survival on xenografting to the chick chorio-allantoic-membrane. In contrast, FZD7-resistant WT in which no cell death was induced showed a different intra-cellular route of the Ab-FZD7 complex compared with sensitive tumors and accumulation of ß-catenin. This coincided with a low sFRP1 and DKK1 (Wnt inhibitors) expression pattern, restored epigenetically with de-methylating agents, and lack of ß-catenin or WTX mutations. The addition of exogenous DKK1 and sFRP1 to the tumor cells enabled the sensitization of FZD7-resistant WT to the FZD7 Ab. Finally, although extremely difficult to achieve because of dynamic cellular localization of FZD7, sorting of FZD7(+) cells from resistant WT, showed them to be highly clonogenic/proliferative, overexpressing WT 'stemness' genes, emphasizing the importance of targeting this fraction. FZD7 Ab therapy alone or in combination with Wnt pathway antagonists may have a significant role in the treatment of WT via targeting of a tumor progenitor population.


Assuntos
Antineoplásicos/farmacologia , Receptores Frizzled/imunologia , Neoplasias Renais/tratamento farmacológico , Receptores Acoplados a Proteínas G/imunologia , Tumor de Wilms/tratamento farmacológico , Proteínas Wnt/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Anticorpos Monoclonais/farmacologia , Antineoplásicos/imunologia , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/biossíntese , Proteínas de Ciclo Celular/farmacologia , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Neoplasias Renais/genética , Neoplasias Renais/imunologia , Neoplasias Renais/patologia , Mutação , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Serina-Treonina Quinases/farmacologia , Células Tumorais Cultivadas , Proteínas Supressoras de Tumor/genética , Tumor de Wilms/genética , Tumor de Wilms/imunologia , Tumor de Wilms/patologia , beta Catenina/biossíntese , beta Catenina/genética
2.
Plant Physiol ; 127(3): 986-97, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11706180

RESUMO

The expression of light-regulated genes in plants is controlled by different classes of photoreceptors that act through a variety of signaling molecules. During photomorphogenesis, the early light-induced protein (Elip) genes are among the first to be induced. To understand the light signal transduction pathways that regulate Elip expression, the two Elip genes, Elip1 and Elip2, in Arabidopsis were studied, taking advantage of the genetic tools available for studying light signaling in Arabidopsis. Using two independent quantitative reverse transcriptase-PCR techniques, we found that red, far-red, and blue lights positively regulate expression of the Elip genes. Phytochrome A and phytochrome B are involved in this signaling. The cryptochrome or phototropin photoreceptors are not required for blue-light induction of either Elip gene, suggesting the involvement of an additional, unidentified, blue-light receptor. Although the COP9 signalosome, a downstream regulator, is involved in dark repression of both Elips, Elip1 and Elip2 show different expression patterns in the dark. The transcription factor HY5 promotes the light induction of Elip1, but not Elip2. A defect in photosystem II activity in greening of hy5 seedlings may result from the loss of Elip1. Heat shock positively controlled Elip1 and Elip2 in a light-independent fashion. This induction is independent of HY5, indicating that heat shock and light activate transcription of the Elip genes through independent pathways.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Drosophila , Proteínas do Olho , Regulação da Expressão Gênica de Plantas , Células Fotorreceptoras de Invertebrados , Células Fotorreceptoras , Proteínas de Plantas/genética , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/efeitos da radiação , Fatores de Transcrição de Zíper de Leucina Básica , Clorofila/metabolismo , Clorofila/efeitos da radiação , Criptocromos , Proteínas de Ligação a DNA , Escuridão , Flavoproteínas/metabolismo , Flavoproteínas/efeitos da radiação , Fatores de Transcrição de Choque Térmico , Proteínas de Choque Térmico , Luz , Complexos de Proteínas Captadores de Luz , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/efeitos da radiação , Complexo de Proteínas do Centro de Reação Fotossintética , Complexo de Proteína do Fotossistema II , Fitocromo/metabolismo , Fitocromo/efeitos da radiação , Fitocromo A , Fitocromo B , Proteínas de Plantas/metabolismo , Proteínas de Plantas/efeitos da radiação , Receptores Acoplados a Proteínas G , Transdução de Sinais , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA