Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 22(22): 8827-8834, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36367457

RESUMO

The quantum spin Hall (QSH) effect has attracted extensive research interest because of the potential applications in spintronics and quantum computing, which is attributable to two conducting edge channels with opposite spin polarization and the quantized electronic conductance of 2e2/h. Recently, 2M-WS2, a new stable phase of transition metal dichalcogenides with a 2M structure showing a layer configuration identical to that of the monolayer 1T' TMDs, was suggested to be a QSH insulator as well as a superconductor with a critical transition temperature of around 8 K. Here, high-resolution angle-resolved photoemission spectroscopy (ARPES) and spin-resolved ARPES are applied to investigate the electronic and spin structure of the topological surface states (TSS) in the superconducting 2M-WS2. The TSS exhibit characteristic spin-momentum-locking behavior, suggesting the existence of long-sought nontrivial Z2 topological states therein. We expect that 2M-WS2 with coexisting superconductivity and TSS might host the promising Majorana bound states.

2.
Phys Rev Lett ; 129(14): 146401, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36240409

RESUMO

Topological materials have broad application prospects in quantum computing and spintronic devices. Among them, dual topological materials with low dimensionality provide an excellent platform for manipulating various topological states and generating highly conductive spin currents. However, direct observation of their topological surface states still lacks. Here, we reveal the coexistence of the strong and weak topological phases in a quasi-one-dimensional material, TaNiTe_{5}, by spin- and angle- resolved photoemission spectroscopy. The surface states protected by weak topological order forms Dirac-node arcs in the vicinity of the Fermi energy, providing the opportunity to develop spintronics devices with high carrier density that is tunable by bias voltage.

4.
Nat Mater ; 20(8): 1093-1099, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34017119

RESUMO

Control of the phase transition from topological to normal insulators can allow for an on/off switching of spin current. While topological phase transitions have been realized by elemental substitution in semiconducting alloys, such an approach requires preparation of materials with various compositions. Thus it is quite far from a feasible device application, which demands a reversible operation. Here we use angle-resolved photoemission spectroscopy and spin- and angle-resolved photoemission spectroscopy to visualize the strain-driven band-structure evolution of the quasi-one-dimensional superconductor TaSe3. We demonstrate that it undergoes reversible strain-induced topological phase transitions from a strong topological insulator phase with spin-polarized, quasi-one-dimensional topological surface states, to topologically trivial semimetal and band insulating phases. The quasi-one-dimensional superconductor TaSe3 provides a suitable platform for engineering the topological spintronics, for example as an on/off switch for a spin current that is robust against impurity scattering.

5.
Nat Mater ; 20(4): 473-479, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33398124

RESUMO

Low-dimensional van der Waals materials have been extensively studied as a platform with which to generate quantum effects. Advancing this research, topological quantum materials with van der Waals structures are currently receiving a great deal of attention. Here, we use the concept of designing topological materials by the van der Waals stacking of quantum spin Hall insulators. Most interestingly, we find that a slight shift of inversion centre in the unit cell caused by a modification of stacking induces a transition from a trivial insulator to a higher-order topological insulator. Based on this, we present angle-resolved photoemission spectroscopy results showing that the real three-dimensional material Bi4Br4 is a higher-order topological insulator. Our demonstration that various topological states can be selected by stacking chains differently, combined with the advantages of van der Waals materials, offers a playground for engineering topologically non-trivial edge states towards future spintronics applications.

6.
Nat Commun ; 12(1): 406, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33462222

RESUMO

A quantum spin Hall (QSH) insulator hosts topological states at the one-dimensional (1D) edge, along which backscattering by nonmagnetic impurities is strictly prohibited. Its 3D analogue, a weak topological insulator (WTI), possesses similar quasi-1D topological states confined at side surfaces. The enhanced confinement could provide a route for dissipationless current and better advantages for applications relative to strong topological insulators (STIs). However, the topological side surface is usually not cleavable and is thus hard to observe. Here, we visualize the topological states of the WTI candidate ZrTe5 by spin and angle-resolved photoemission spectroscopy (ARPES): a quasi-1D band with spin-momentum locking was revealed on the side surface. We further demonstrate that the bulk band gap is controlled by external strain, realizing a more stable WTI state or an ideal Dirac semimetal (DS) state. The highly directional spin-current and the tunable band gap in ZrTe5 will provide an excellent platform for applications.

7.
J Vis Exp ; (136)2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-30010669

RESUMO

The goal of this protocol is to present how to perform spin- and angle-resolved photoemission spectroscopy combined with polarization-variable 7-eV laser (laser-SARPES), and demonstrate a power of this technique for studying solid state physics. Laser-SARPES achieves two great capabilities. Firstly, by examining orbital selection rule of linearly polarized lasers, orbital selective excitation can be carried out in SAPRES experiment. Secondly, the technique can show full information of a variation of the spin quantum axis as a function of the light polarization. To demonstrate the power of the collaboration of these capabilities in laser-SARPES, we apply this technique for the investigations of spin-orbit coupled surface states of Bi2Se3. This technique affords to decompose spin and orbital components from the spin-orbit coupled wavefunctions. Moreover, as a representative advantage of using the direct spin detection collaborated with the polarization-variable laser, the technique unambiguously visualizes the light polarization dependence of the spin quantum axis in three-dimension. Laser-SARPES dramatically increases a capability of photoemission technique.


Assuntos
Lasers/estatística & dados numéricos , Espectroscopia Fotoeletrônica/métodos
8.
Phys Rev Lett ; 121(25): 257201, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30608774

RESUMO

Using high-resolution spin-resolved photoemission spectroscopy, we observe a thermal spin depolarization to which all spin-polarized electrons contribute. Furthermore, we observe a distinct minority spin state near the Fermi level and a corresponding depolarization that seldom contributes to demagnetization. The origin of this depolarization has been identified as the many-body effect characteristic of half-metallic ferromagnets. Our investigation opens an experimental field of itinerant ferromagnetic physics focusing on phenomena with sub-meV energy scale.

9.
Nat Commun ; 8: 14588, 2017 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-28232721

RESUMO

Spin-orbit interaction entangles the orbitals with the different spins. The spin-orbital-entangled states were discovered in surface states of topological insulators. However, the spin-orbital-entanglement is not specialized in the topological surface states. Here, we show the spin-orbital texture in a surface state of Bi(111) by laser-based spin- and angle-resolved photoelectron spectroscopy (laser-SARPES) and describe three-dimensional spin-rotation effect in photoemission resulting from spin-dependent quantum interference. Our model reveals that, in the spin-orbit-coupled systems, the spins pointing to the mutually opposite directions are independently locked to the orbital symmetries. Furthermore, direct detection of coherent spin phenomena by laser-SARPES enables us to clarify the phase of the dipole transition matrix element responsible for the spin direction in photoexcited states. These results permit the tuning of the spin polarization of optically excited electrons in solids with strong spin-orbit interaction.

10.
Phys Rev Lett ; 117(1): 016803, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27419582

RESUMO

A totally anisotropic peculiar Rashba-Bychkov (RB) splitting of electronic bands was found on the Tl/Si(110)-(1×1) surface with C_{1h} symmetry by angle- and spin-resolved photoelectron spectroscopy and first-principles theoretical calculation. The constant energy contour of the upper branch of the RB split band has a warped elliptical shape centered at a k point located between Γ[over ¯] and the edge of the surface Brillouin zone, i.e., at a point without time-reversal symmetry. The spin-polarization vector of this state is in-plane and points almost the same direction along the whole elliptic contour. This novel nonvortical RB spin structure is confirmed as a general phenomenon originating from the C_{1h} symmetry of the surface.

11.
Rev Sci Instrum ; 87(5): 053111, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27250396

RESUMO

We describe a spin- and angle-resolved photoelectron spectroscopy (SARPES) apparatus with a vacuum-ultraviolet (VUV) laser (hν = 6.994 eV) developed at the Laser and Synchrotron Research Center at the Institute for Solid State Physics, The University of Tokyo. The spectrometer consists of a hemispherical photoelectron analyzer equipped with an electron deflector function and twin very-low-energy-electron-diffraction-type spin detectors, which allows us to analyze the spin vector of a photoelectron three-dimensionally with both high energy and angular resolutions. The combination of the high-performance spectrometer and the high-photon-flux VUV laser can achieve an energy resolution of 1.7 meV for SARPES. We demonstrate that the present laser-SARPES machine realizes a quick SARPES on the spin-split band structure of a Bi(111) film even with 7 meV energy and 0.7(∘) angular resolutions along the entrance-slit direction. This laser-SARPES machine is applicable to the investigation of spin-dependent electronic states on an energy scale of a few meV.

12.
J Synchrotron Radiat ; 21(Pt 2): 352-65, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24562556

RESUMO

A new soft X-ray beamline, BL07LSU, has been constructed at SPring-8 to perform advanced soft X-ray spectroscopy for materials science. The beamline is designed to achieve high energy resolution (E/ΔE> 10000) and high photon flux [>10(12) photons s(-1) (0.01% bandwidth)(-1)] in the photon energy range 250-2000 eV with controllable polarization. To realise this state-of-the-art performance, a novel segmented cross undulator was developed and adopted as a light source. The details of the undulator light source and beamline monochromator design are described. The achieved performance of the beamline, such as the photon flux, energy resolution and the state of polarization, is reported.

13.
Nat Commun ; 4: 2073, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23811797

RESUMO

The addition of the valley degree of freedom to a two-dimensional spin-polarized electronic system provides the opportunity to multiply the functionality of next-generation devices. So far, however, such devices have not been realized due to the difficulty to polarize the valleys, which is an indispensable step to activate this degree of freedom. Here we show the formation of 100% spin-polarized valleys by a simple and easy way using the Rashba effect on a system with C3 symmetry. This polarization, which is much higher than those in ordinary Rashba systems, results in the valleys acting as filters that can suppress the backscattering of spin-charge. The present system is formed on a silicon substrate, and therefore opens a new avenue towards the realization of silicon spintronic devices with high efficiency.

14.
Rev Sci Instrum ; 83(2): 023109, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22380081

RESUMO

We have developed a soft x-ray time-resolved photoemission spectroscopy system using synchrotron radiation (SR) at SPring-8 BL07LSU and an ultrashort pulse laser system. Two-dimensional angle-resolved measurements were performed with a time-of-flight-type analyzer. The photoemission spectroscopy system is synchronized to light pulses of SR and laser using a time control unit. The performance of the instrument is demonstrated by mapping the band structure of a Si(111) crystal over the surface Brillouin zones and observing relaxation of the surface photo-voltage effect using the pump (laser) and probe (SR) method.

15.
Phys Rev Lett ; 104(15): 156805, 2010 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-20482008

RESUMO

The electronic structure of ultrathin Ag(111) films covered with a square root(3) x square root(3)-Bi/Ag ordered alloy was investigated by means of spin- and angle-resolved photoemission spectroscopy. Surface-state (SS) bands, spin split by the Rashba interaction, selectively couple to the quantum-well state (QWS) bands, originally spin degenerate, in the metal film. Gaps are found to open between QWS and SS with parallel spins, while free-electron-like QWS dispersions are observed for antiparallel spin configurations. The present results demonstrate that in a nonmagnetic metal film the spin degeneracy of the valence levels can be lifted by hybridization with Rashba-type SS bands.

16.
Phys Rev Lett ; 102(10): 105503, 2009 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-19392124

RESUMO

Nanoscale chemical imaging using scanning tunneling microscopy is demonstrated with a core-level excitation of the probed element by a synchrotron radiation light. Pronounced element-specific contrasts were observed in the spatial resolution of approximately 10 nm on checkerboard-patterned Ni and Fe samples in differential photoinduced current images taken with the scanning tunneling microscopy tip under the synchrotron radiation irradiation whose photon energies are above and below the Ni (Fe) L absorption edge. The local detection of the photoinduced secondary electrons through the surface barrier lowered by the proximate tip and/or via the tunneling process probably plays an important role in achieving the high-spatial resolution.

17.
Rev Sci Instrum ; 79(12): 123117, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19123555

RESUMO

A new spin- and angle-resolved photoemission spectrometer was developed adopting the very-low-energy-electron-diffraction (VLEED)-type spin polarimeter. The Fe(001)p(1x1)-O film grown on MgO(001) crystal for the VLEED target yields significantly high spin-resolving power, the effective Sherman function of 0.40+/-0.02, with long lifetime and stability compared to the conventional Fe(001) target. Under the favor of high resolving power, approximately 100 times higher efficiency than that of conventional Mott-type spin polarimeter, the figure of merit of 1.9+/-0.2x10(-2) was achieved. Owing to this high efficiency, high-energy resolution can be realized with this new spin-polarized photoemission spectrometer. The simplified ways of target preparation and revitalization make the VLEED spin polarimeter much more convenient and feasible for the spin-polarized photoemission spectroscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...