Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 110(18): 183001, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23683194

RESUMO

In the 1980s Demkov, Kondratovich, and Ostrovsky and Kondratovich and Ostrovsky proposed an experiment based on the projection of slow electrons emitted by a photoionized atom onto a position-sensitive detector. In the case of resonant excitation, they predicted that the spatial electron distribution on the detector should represent nothing else but a magnified image of the projection of a quasibound electronic state. By exciting lithium atoms in the presence of a static electric field, we present in this Letter the first experimental photoionization wave function microscopy images where signatures of quasibound states are evident. Characteristic resonant features, such as (i) the abrupt change of the number of wave function nodes across a resonance and (ii) the broadening of the outer ring of the image (associated with tunneling ionization), are observed and interpreted via wave packet propagation simulations and recently proposed resonance tunneling mechanisms. The electron spatial distribution measured by our microscope is a direct macroscopic image of the projection of the microscopic squared modulus of the electron wave that is quasibound to the atom and constitutes the first experimental realization of the experiment proposed 30 years ago.

2.
Rev Sci Instrum ; 83(1): 013305, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22299943

RESUMO

DIAM (Dispositif d'Irradiation d'Agrégats Moléculaires) is a new experimental setup devoted to investigate processes induced by irradiation at the nanoscale. The DIAM apparatus is based on a combination of techniques including a particle beam from high-energy physics, a cluster source from molecular and cluster physics, and mass spectrometry form analytical sciences. In this paper, we will describe the first part of the DIAM apparatus that consists of an ExB double spectrometer connected to a cluster ion source based on a continuous supersonic expansion in the presence of ionizing electrons. This setup produces high intensities of energy-and-mass selected molecular cluster ion beams (1000 s of counts s(-1)). The performance of the instrument will be shown through measurements of 6-8 keV beams of protonated water clusters, (H(2)O)(n)H(+) (n = 0-21) and mixed protonated (or deprotonated) water-pyridine cluster ions: PyrH(+)(H(2)O)(n) (n = 0-15), Pyr(2)H(+) (H(2)O)(n) (n = 0-9), and (Pyr-H)(+) (H(2)O).


Assuntos
Gases/química , Espectrometria de Massas/instrumentação , Nanotecnologia/instrumentação , Aceleração , Prótons , Piridinas/química , Água/química
3.
Rev Sci Instrum ; 81(12): 125111, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21198055

RESUMO

We propose a simple and general analytical model describing the operation of a velocity-map-imaging spectrometer. We show that such a spectrometer, possibly equipped with a magnifying lens, can be efficiently modeled by combining analytical expressions for the axial potential distributions along with a transfer matrix method. The model leads transparently to the prediction of the instrument's operating conditions as well as to its resolution. A photoelectron velocity-map-imaging spectrometer with a magnifying lens, built and operated along the lines suggested by the model has been successfully employed for recording images at threshold photoionization of atomic lithium. The model's reliability is demonstrated by the fairly good agreement between experimental results and calculations. Finally, the limitations of the analytical method along with possible generalizations, extensions, and potential applications are also discussed. The model may serve as a guide for users interested in building and operating such spectrometers as well as a tutorial tool.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...