Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Rep ; 11(15): e15793, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37568262

RESUMO

AIMS: Stanniocalcin-2 (STC2) has recently been implicated in human muscle mass variability by genetic analysis. Biochemically, STC2 inhibits the proteolytic activity of the metalloproteinase PAPP-A, which promotes muscle growth by upregulating the insulin-like growth factor (IGF) axis. The aim was to examine if STC2 affects skeletal muscle mass and to assess how the IGF axis mediates muscle hypertrophy induced by functional overload. METHODS: We compared muscle mass and muscle fiber morphology between Stc2-/- (n = 21) and wild-type (n = 15) mice. We then quantified IGF1, IGF2, IGF binding proteins -4 and -5 (IGFBP-4, IGFBP-5), PAPP-A and STC2 in plantaris muscles of wild-type mice subjected to 4-week unilateral overload (n = 14). RESULTS: Stc2-/- mice showed up to 10% larger muscle mass compared with wild-type mice. This increase was mediated by greater cross-sectional area of muscle fibers. Overload increased plantaris mass and components of the IGF axis, including quantities of IGF1 (by 2.41-fold, p = 0.0117), IGF2 (1.70-fold, p = 0.0461), IGFBP-4 (1.48-fold, p = 0.0268), PAPP-A (1.30-fold, p = 0.0154) and STC2 (1.28-fold, p = 0.019). CONCLUSION: Here we provide evidence that STC2 is an inhibitor of muscle growth upregulated, along with other components of the IGF axis, during overload-induced muscle hypertrophy.


Assuntos
Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina , Hormônios Peptídicos , Animais , Camundongos , Glicoproteínas/genética , Glicoproteínas/metabolismo , Hipertrofia , Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Músculo Esquelético/metabolismo , Hormônios Peptídicos/metabolismo , Proteína Plasmática A Associada à Gravidez/genética
2.
Glia ; 66(5): 934-950, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29350423

RESUMO

During development of the central nervous system not all axons are myelinated, and axons may have distinct myelination patterns. Furthermore, the number of myelin sheaths formed by each oligodendrocyte is highly variable. However, our current knowledge about the axo-glia communication that regulates the formation of myelin sheaths spatially and temporally is limited. By using axon-mimicking microfibers and a zebrafish model system, we show that axonal ephrin-A1 inhibits myelination. Ephrin-A1 interacts with EphA4 to activate the ephexin1-RhoA-Rock-myosin 2 signaling cascade and causes inhibition of oligodendrocyte process extension. Both in myelinating co-cultures and in zebrafish larvae, activation of EphA4 decreases myelination, whereas myelination is increased by inhibition of EphA4 signaling at different levels of the pathway, or by receptor knockdown. Mechanistically, the enhanced myelination is a result of a higher number of myelin sheaths formed by each oligodendrocyte, not an increased number of mature cells. Thus, we have identified EphA4 and ephrin-A1 as novel negative regulators of myelination. Our data suggest that activation of an EphA4-RhoA pathway in oligodendrocytes by axonal ephrin-A1 inhibits stable axo-glia interaction required for generating a myelin sheath.


Assuntos
Sistema Nervoso Central/crescimento & desenvolvimento , Sistema Nervoso Central/metabolismo , Efrina-A1/metabolismo , Bainha de Mielina/metabolismo , Receptor EphA4/metabolismo , Animais , Animais Geneticamente Modificados , Axônios/metabolismo , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , Técnicas de Cocultura , Ratos , Transdução de Sinais , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
3.
ASN Neuro ; 7(5)2015.
Artigo em Inglês | MEDLINE | ID: mdl-26354550

RESUMO

In the central nervous system, myelination of axons is required to ensure fast saltatory conduction and for survival of neurons. However, not all axons are myelinated, and the molecular mechanisms involved in guiding the oligodendrocyte processes toward the axons to be myelinated are not well understood. Only a few negative or positive guidance clues that are involved in regulating axo-glia interaction prior to myelination have been identified. One example is laminin, known to be required for early axo-glia interaction, which functions through α6ß1 integrin. Here, we identify the Eph-ephrin family of guidance receptors as novel regulators of the initial axo-glia interaction, preceding myelination. We demonstrate that so-called forward and reverse signaling, mediated by members of both Eph and ephrin subfamilies, has distinct and opposing effects on processes extension and myelin sheet formation. EphA forward signaling inhibits oligodendrocyte process extension and myelin sheet formation, and blocking of bidirectional signaling through this receptor enhances myelination. Similarly, EphB forward signaling also reduces myelin membrane formation, but in contrast to EphA forward signaling, this occurs in an integrin-dependent manner, which can be reversed by overexpression of a constitutive active ß1-integrin. Furthermore, ephrin-B reverse signaling induced by EphA4 or EphB1 enhances myelin sheet formation. Combined, this suggests that the Eph-ephrin receptors are important mediators of bidirectional signaling between axons and oligodendrocytes. It further implies that balancing Eph-ephrin forward and reverse signaling is important in the selection process of axons to be myelinated.


Assuntos
Axônios/fisiologia , Efrinas/metabolismo , Oligodendroglia/fisiologia , Receptores da Família Eph/metabolismo , Animais , Comunicação Celular/fisiologia , Diferenciação Celular/fisiologia , Células Cultivadas , Córtex Cerebral/fisiologia , Técnicas de Cocultura , Gânglios Espinais/crescimento & desenvolvimento , Gânglios Espinais/fisiologia , Integrinas/metabolismo , Bainha de Mielina/fisiologia , Células-Tronco Neurais/fisiologia , Ratos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...