Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 65(22): 15416-15432, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36367089

RESUMO

The development of ligands for biological targets is critically dependent on the identification of sites on proteins that bind molecules with high affinity. A set of compounds, called FragLites, can identify such sites, along with the interactions required to gain affinity, by X-ray crystallography. We demonstrate the utility of FragLites in mapping the binding sites of bromodomain proteins BRD4 and ATAD2 and demonstrate that FragLite mapping is comparable to a full fragment screen in identifying ligand binding sites and key interactions. We extend the FragLite set with analogous compounds derived from amino acids (termed PepLites) that mimic the interactions of peptides. The output of the FragLite maps is shown to enable the development of ligands with leadlike potency. This work establishes the use of FragLite and PepLite screening at an early stage in ligand discovery allowing the rapid assessment of tractability of protein targets and informing downstream hit-finding.


Assuntos
Proteínas Nucleares , Fatores de Transcrição , Ligantes , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Domínios Proteicos , Sítios de Ligação , Cristalografia por Raios X , Peptídeos/metabolismo , Ligação Proteica , Proteínas de Ciclo Celular/metabolismo
2.
J Med Chem ; 65(9): 6513-6540, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35468293

RESUMO

The nonclassical extracellular signal-related kinase 5 (ERK5) mitogen-activated protein kinase pathway has been implicated in increased cellular proliferation, migration, survival, and angiogenesis; hence, ERK5 inhibition may be an attractive approach for cancer treatment. However, the development of selective ERK5 inhibitors has been challenging. Previously, we described the development of a pyrrole carboxamide high-throughput screening hit into a selective, submicromolar inhibitor of ERK5 kinase activity. Improvement in the ERK5 potency was necessary for the identification of a tool ERK5 inhibitor for target validation studies. Herein, we describe the optimization of this series to identify nanomolar pyrrole carboxamide inhibitors of ERK5 incorporating a basic center, which suffered from poor oral bioavailability. Parallel optimization of potency and in vitro pharmacokinetic parameters led to the identification of a nonbasic pyrazole analogue with an optimal balance of ERK5 inhibition and oral exposure.


Assuntos
Proteína Quinase 7 Ativada por Mitógeno , Pirróis , Proliferação de Células , Pirróis/farmacologia
3.
J Med Chem ; 64(14): 10001-10018, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34212719

RESUMO

NF-κB-inducing kinase (NIK) is a key enzyme in the noncanonical NF-κB pathway, of interest in the treatment of a variety of diseases including cancer. Validation of NIK as a drug target requires potent and selective inhibitors. The protein contains a cysteine residue at position 444 in the back pocket of the active site, unique within the kinome. Analysis of existing inhibitor scaffolds and early structure-activity relationships (SARs) led to the design of C444-targeting covalent inhibitors based on alkynyl heterocycle warheads. Mass spectrometry provided proof of the covalent mechanism, and the SAR was rationalized by computational modeling. Profiling of more potent analogues in tumor cell lines with constitutively activated NIK signaling induced a weak antiproliferative effect, suggesting that kinase inhibition may have limited impact on cancer cell growth. This study shows that alkynyl heterocycles are potential cysteine traps, which may be employed where common Michael acceptors, such as acrylamides, are not tolerated.


Assuntos
Alcinos/farmacologia , Cisteína/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Pirimidinas/farmacologia , Alcinos/síntese química , Alcinos/química , Cisteína/química , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade , Quinase Induzida por NF-kappaB
4.
J Med Chem ; 64(7): 4071-4088, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33761253

RESUMO

Inhibition of murine double minute 2 (MDM2)-p53 protein-protein interaction with small molecules has been shown to reactivate p53 and inhibit tumor growth. Here, we describe rational, structure-guided, design of novel isoindolinone-based MDM2 inhibitors. MDM2 X-ray crystallography, quantum mechanics ligand-based design, and metabolite identification all contributed toward the discovery of potent in vitro and in vivo inhibitors of the MDM2-p53 interaction with representative compounds inducing cytostasis in an SJSA-1 osteosarcoma xenograft model following once-daily oral administration.


Assuntos
Antineoplásicos/farmacologia , Isoindóis/farmacologia , Osteossarcoma/tratamento farmacológico , Multimerização Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Neoplasias Ósseas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Estabilidade de Medicamentos , Feminino , Humanos , Isoindóis/síntese química , Isoindóis/metabolismo , Macaca fascicularis , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
5.
RSC Med Chem ; 11(6): 707-731, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33479670

RESUMO

Renewed interest in covalent inhibitors of enzymes implicated in disease states has afforded several agents targeted at protein kinases of relevance to cancers. We now report the design, synthesis and biological evaluation of 6-ethynylpurines that act as covalent inhibitors of Nek2 by capturing a cysteine residue (Cys22) close to the catalytic domain of this protein kinase. Examination of the crystal structure of the non-covalent inhibitor 3-((6-cyclohexylmethoxy-7H-purin-2-yl)amino)benzamide in complex with Nek2 indicated that replacing the alkoxy with an ethynyl group places the terminus of the alkyne close to Cys22 and in a position compatible with the stereoelectronic requirements of a Michael addition. A series of 6-ethynylpurines was prepared and a structure activity relationship (SAR) established for inhibition of Nek2. 6-Ethynyl-N-phenyl-7H-purin-2-amine [IC50 0.15 µM (Nek2)] and 4-((6-ethynyl-7H-purin-2-yl)amino)benzenesulfonamide (IC50 0.14 µM) were selected for determination of the mode of inhibition of Nek2, which was shown to be time-dependent, not reversed by addition of ATP and negated by site directed mutagenesis of Cys22 to alanine. Replacement of the ethynyl group by ethyl or cyano abrogated activity. Variation of substituents on the N-phenyl moiety for 6-ethynylpurines gave further SAR data for Nek2 inhibition. The data showed little correlation of activity with the nature of the substituent, indicating that after sufficient initial competitive binding to Nek2 subsequent covalent modification of Cys22 occurs in all cases. A typical activity profile was that for 2-(3-((6-ethynyl-9H-purin-2-yl)amino)phenyl)acetamide [IC50 0.06 µM (Nek2); GI50 (SKBR3) 2.2 µM] which exhibited >5-10-fold selectivity for Nek2 over other kinases; it also showed > 50% growth inhibition at 10 µM concentration against selected breast and leukaemia cell lines. X-ray crystallographic analysis confirmed that binding of the compound to the Nek2 ATP-binding site resulted in covalent modification of Cys22. Further studies confirmed that 2-(3-((6-ethynyl-9H-purin-2-yl)amino)phenyl)acetamide has the attributes of a drug-like compound with good aqueous solubility, no inhibition of hERG at 25 µM and a good stability profile in human liver microsomes. It is concluded that 6-ethynylpurines are promising agents for cancer treatment by virtue of their selective inhibition of Nek2.

6.
Eur J Med Chem ; 178: 530-543, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31212132

RESUMO

Extracellular regulated kinase 5 (ERK5) signalling has been implicated in driving a number of cellular phenotypes including endothelial cell angiogenesis and tumour cell motility. Novel ERK5 inhibitors were identified using high throughput screening, with a series of pyrrole-2-carboxamides substituted at the 4-position with an aroyl group being found to exhibit IC50 values in the micromolar range, but having no selectivity against p38α MAP kinase. Truncation of the N-substituent marginally enhanced potency (∼3-fold) against ERK5, but importantly attenuated inhibition of p38α. Systematic variation of the substituents on the aroyl group led to the selective inhibitor 4-(2-bromo-6-fluorobenzoyl)-N-(pyridin-3-yl)-1H-pyrrole-2-carboxamide (IC50 0.82 µM for ERK5; IC50 > 120 µM for p38α). The crystal structure (PDB 5O7I) of this compound in complex with ERK5 has been solved. This compound was orally bioavailable and inhibited bFGF-driven Matrigel plug angiogenesis and tumour xenograft growth. The selective ERK5 inhibitor described herein provides a lead for further development into a tool compound for more extensive studies seeking to examine the role of ERK5 signalling in cancer and other diseases.


Assuntos
Antineoplásicos/farmacologia , Proteína Quinase 14 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 7 Ativada por Mitógeno/antagonistas & inibidores , Proteínas Nucleares/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Disponibilidade Biológica , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Camundongos , Camundongos Nus , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Proteínas Nucleares/metabolismo , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Fatores de Transcrição/metabolismo
7.
J Med Chem ; 62(7): 3741-3752, 2019 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-30860382

RESUMO

Identifying ligand binding sites on proteins is a critical step in target-based drug discovery. Current approaches to this require resource-intensive screening of large libraries of lead-like or fragment molecules. Here, we describe an efficient and effective experimental approach to mapping interaction sites using a set of halogenated compounds expressing paired hydrogen-bonding motifs, termed FragLites. The FragLites identify productive drug-like interactions, which are identified sensitively and unambiguously by X-ray crystallography, exploiting the anomalous scattering of the halogen substituent. This mapping of protein interaction surfaces provides an assessment of druggability and can identify efficient start points for the de novo design of hit molecules incorporating the interacting motifs. The approach is illustrated by mapping cyclin-dependent kinase 2, which successfully identifies orthosteric and allosteric sites. The hits were rapidly elaborated to develop efficient lead-like molecules. Hence, the approach provides a new method of identifying ligand sites, assessing tractability and discovering new leads.


Assuntos
Halogenação , Sítios de Ligação , Cristalografia por Raios X , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos , Ligantes , Bibliotecas de Moléculas Pequenas/química
8.
Future Med Chem ; 10(11): 1369-1388, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29846081

RESUMO

Inhibition of CDKs is an attractive approach to cancer therapy due to their vital role in cell growth and transcription. Pan-CDK inhibitors have shown some clinical benefit, and trials are ongoing. Selective CDK4 and CDK6 inhibitors have been licensed for the treatment of hormone responsive, RB-positive breast cancer in combination with antihormonal agents. Selective inhibitors of CDKs 5, 7, 8, 9 and 12 have been identified across a range of chemotypes.


Assuntos
Antineoplásicos/farmacologia , Quinases Ciclina-Dependentes/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Flavonoides/farmacologia , Humanos , Estrutura Molecular , Piperidinas/farmacologia , Roscovitina/farmacologia , Transdução de Sinais
9.
Org Biomol Chem ; 16(11): 1843-1850, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29469144

RESUMO

ATAD2 is an ATPase that is overexpressed in a variety of cancers and associated with a poor patient prognosis. This protein has been suggested to function as a cofactor for a range of transcription factors, including the proto-oncogene MYC and the androgen receptor. ATAD2 comprises an ATPase domain, implicated in chromatin remodelling, and a bromodomain which allows it to interact with acetylated histone tails. Dissection of the functional roles of these two domains would benefit from the availability of selective, cell-permeable pharmacological probes. An in silico evaluation of the 3D structures of various bromodomains suggested that developing small molecule ligands for the bromodomain of ATAD2 is likely to be challenging, although recent reports have shown that ATAD2 bromodomain ligands can be identified. We report a structure-guided fragment-based approach to identify lead compounds for ATAD2 bromodomain inhibitor development. Our findings indicate that the ATAD2 bromodomain can accommodate fragment hits (Mr < 200) that yield productive structure-activity relationships, and structure-guided design enabled the introduction of selectivity over BRD4.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/antagonistas & inibidores , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Desenho de Fármacos , Proteínas Nucleares/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Fatores de Transcrição/metabolismo , ATPases Associadas a Diversas Atividades Celulares/química , Proteínas de Ciclo Celular , Desenho Assistido por Computador , Proteínas de Ligação a DNA/química , Humanos , Ligantes , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Proteínas Nucleares/química , Ligação Proteica , Domínios Proteicos/efeitos dos fármacos , Proto-Oncogene Mas , Fatores de Transcrição/química
10.
Clin Chem ; 64(2): 346-354, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29038156

RESUMO

BACKGROUND: The emergence of novel psychoactive substances (NPS), particularly synthetic cannabinoid receptor agonists (SCRA), has involved hundreds of potentially harmful chemicals in a highly dynamic international market challenging users', clinicians', and regulators' understanding of what circulating substances are causing harm. We describe a toxicovigilance system for NPS that predicted the UK emergence and identified the clinical toxicity caused by novel indole and indazole carboxylate SCRA. METHODS: To assist early accurate identification, we synthesized 5 examples of commercially unavailable indole and indazole carboxylate SCRA (FUB-NPB-22, 5F-NPB-22, 5F-SDB-005, FUB-PB-22, NM-2201). We analyzed plasma and urine samples from 160 patients presenting to emergency departments with severe toxicity after suspected NPS use during 2015 to 2016 for these and other NPS using data-independent LC-MS/MS. RESULTS: We successfully synthesized 5 carboxylate SCRAs using established synthetic and analytical chemistry methodologies. We identified at least 1 SCRA in samples from 49 patients, including an indole or indazole carboxylate SCRA in 17 (35%), specifically 5F-PB-22 (14%), FUB PB-22 (6%), BB-22 (2%), 5F NPB-22 (20%), FUB NPB-22 (2%), and 5F-SDB-005 (4%). In these 17 patients, there was analytical evidence of other substances in 16. Clinical features included agitation and aggression (82%), reduced consciousness (76%), acidosis (47%), hallucinations and paranoid features (41%), tachycardia (35%), hypertension (29%), raised creatine kinase (24%), and seizures (12%). CONCLUSIONS: This toxicovigilance system predicted the emergence of misuse of indole and indazole carboxylate SCRA, documented associated clinical harms, and notified relevant agencies. Toxicity appears consistent with other SCRA, including mental state disturbances and reduced consciousness.


Assuntos
Agonistas de Receptores de Canabinoides/toxicidade , Ácidos Carboxílicos/química , Indazóis/toxicidade , Indóis/toxicidade , Sistemas de Notificação de Reações Adversas a Medicamentos , Agonistas de Receptores de Canabinoides/sangue , Agonistas de Receptores de Canabinoides/urina , Cromatografia Líquida/métodos , Humanos , Indazóis/química , Indóis/química , Limite de Detecção , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos , Testes de Toxicidade , Reino Unido
11.
J Med Chem ; 60(5): 1746-1767, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28005359

RESUMO

Purines and related heterocycles substituted at C-2 with 4'-sulfamoylanilino and at C-6 with a variety of groups have been synthesized with the aim of achieving selectivity of binding to CDK2 over CDK1. 6-Substituents that favor competitive inhibition at the ATP binding site of CDK2 were identified and typically exhibited 10-80-fold greater inhibition of CDK2 compared to CDK1. Most impressive was 4-((6-([1,1'-biphenyl]-3-yl)-9H-purin-2-yl)amino) benzenesulfonamide (73) that exhibited high potency toward CDK2 (IC50 0.044 µM) but was ∼2000-fold less active toward CDK1 (IC50 86 µM). This compound is therefore a useful tool for studies of cell cycle regulation. Crystal structures of inhibitor-kinase complexes showed that the inhibitor stabilizes a glycine-rich loop conformation that shapes the ATP ribose binding pocket and that is preferred in CDK2 but has not been observed in CDK1. This aspect of the active site may be exploited for the design of inhibitors that distinguish between CDK1 and CDK2.


Assuntos
Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Purinas/farmacologia , Cristalografia por Raios X , Inibidores de Proteínas Quinases/química , Análise Espectral/métodos , Relação Estrutura-Atividade
12.
Oncotarget ; 8(12): 19089-19124, 2017 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-27833088

RESUMO

Nek2 (NIMA-related kinase 2) is a cell cycle-dependent serine/threonine protein kinase that regulates centrosome separation at the onset of mitosis. Overexpression of Nek2 is common in human cancers and suppression can restrict tumor cell growth and promote apoptosis. Nek2 inhibition with small molecules, therefore, offers the prospect of a new therapy for cancer. To achieve this goal, a better understanding of the requirements for selective-inhibition of Nek2 is required. 6-Alkoxypurines were identified as ATP-competitive inhibitors of Nek2 and CDK2. Comparison with CDK2-inhibitor structures indicated that judicious modification of the 6-alkoxy and 2-arylamino substituents could achieve discrimination between Nek2 and CDK2. In this study, a library of 6-cyclohexylmethoxy-2-arylaminopurines bearing carboxamide, sulfonamide and urea substituents on the 2-arylamino ring was synthesized. Few of these compounds were selective for Nek2 over CDK2, with the best result being obtained for 3-((6-(cyclohexylmethoxy)-9H-purin-2-yl)amino)-N,N-dimethylbenzamide (CDK2 IC50 = 7.0 µM; Nek2 IC50 = 0.62 µM) with >10-fold selectivity. Deletion of the 6-substituent abrogated activity against both Nek2 and CDK2. Nine compounds containing an (E)-dialkylaminovinyl substituent at C-6, all showed selectivity for Nek2, e.g. (E)-6-(2-(azepan-1-yl)vinyl)-N-phenyl-9H-purin-2-amine (CDK2 IC50 = 2.70 µM; Nek2 IC50 = 0.27 µM). Structural biology of selected compounds enabled a partial rationalization of the observed structure activity relationships and mechanism of Nek2 activation. This showed that carboxamide 11 is the first reported inhibitor of Nek2 in the DFG-in conformation.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Quinases Relacionadas a NIMA/antagonistas & inibidores , Antineoplásicos/química , Linhagem Celular Tumoral , Humanos , Espectroscopia de Ressonância Magnética , Relação Estrutura-Atividade
13.
Br J Cancer ; 115(6): 682-90, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27529512

RESUMO

BACKGROUND: The phosphatidylinositol-3-kinase/mammalian target of rapamycin (PI3K/mTOR) pathway is commonly deregulated in human cancer, hence many PI3K and mTOR inhibitors have been developed and have now reached clinical trials. Similarly, CDKs have been investigated as cancer drug targets. METHODS: We have synthesised and characterised a series of 6-aminopyrimidines identified from a kinase screen that inhibit PI3K and/or mTOR and/or CDK2. Kinase inhibition, tumour cell growth, cell cycle distribution, cytotoxicity and signalling experiments were undertaken in HCT116 and HT29 colorectal cancer cell lines, and in vivo HT29 efficacy studies. RESULTS: 2,6-Diaminopyrimidines with an O(4)-cyclohexylmethyl substituent and a C-5-nitroso or cyano group (1,2,5) induced cell cycle phase alterations and were growth inhibitory (GI50<20 µM). Compound 1, but not 2 or 5, potently inhibits CDK2 (IC50=0.1 nM) as well as PI3K, and was cytotoxic at growth inhibitory concentrations. Consistent with kinase inhibition data, compound 1 reduced phospho-Rb and phospho-rS6 at GI50 concentrations. Combination of NU6102 (CDK2 inhibitor) and pictilisib (GDC-0941; pan-PI3K inhibitor) resulted in synergistic growth inhibition, and enhanced cytotoxicity in HT29 cells in vitro and HT29 tumour growth inhibition in vivo. CONCLUSIONS: These studies identified a novel series of mixed CDK2/PI3K inhibitors and demonstrate that dual targeting of CDK2 and PI3K can result in enhanced antitumour activity.


Assuntos
Adenocarcinoma/patologia , Neoplasias Colorretais/patologia , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Terapia de Alvo Molecular , Proteínas de Neoplasias/antagonistas & inibidores , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/uso terapêutico , Adenocarcinoma/enzimologia , Animais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias Colorretais/enzimologia , Quinase 2 Dependente de Ciclina/fisiologia , Humanos , Camundongos , Camundongos Nus , Proteínas de Neoplasias/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/síntese química , Pirimidinas/farmacologia , Distribuição Aleatória , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Ensaio Tumoral de Célula-Tronco , Ensaios Antitumorais Modelo de Xenoenxerto
14.
ACS Comb Sci ; 18(8): 444-55, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27400250

RESUMO

The extracellular-related kinase 5 (ERK5) is a promising target for cancer therapy. A high-throughput screen was developed for ERK5, based on the IMAP FP progressive binding system, and used to identify hits from a library of 57 617 compounds. Four distinct chemical series were evident within the screening hits. Resynthesis and reassay of the hits demonstrated that one series did not return active compounds, whereas three series returned active hits. Structure-activity studies demonstrated that the 4-benzoylpyrrole-2-carboxamide pharmacophore had excellent potential for further development. The minimum kinase binding pharmacophore was identified, and key examples demonstrated good selectivity for ERK5 over p38α kinase.


Assuntos
Amidas/química , Proteína Quinase 7 Ativada por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Pirróis/química , Amidas/síntese química , Antineoplásicos/síntese química , Antineoplásicos/química , Ensaios de Triagem em Larga Escala , Humanos , Proteína Quinase 14 Ativada por Mitógeno/antagonistas & inibidores , Estrutura Molecular , Neoplasias/tratamento farmacológico , Ligação Proteica , Inibidores de Proteínas Quinases/síntese química , Pirróis/síntese química , Relação Estrutura-Atividade
15.
Oncotarget ; 7(29): 46203-46218, 2016 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-27323823

RESUMO

Non-genotoxic reactivation of the p53 pathway by MDM2-p53 binding antagonists is an attractive treatment strategy for wild-type TP53 cancers. To determine how resistance to MDM2/p53 binding antagonists might develop, SJSA-1 and NGP cells were exposed to growth inhibitory concentrations of chemically distinct MDM2 inhibitors, Nutlin-3 and MI-63, and clonal resistant cell lines generated. The p53 mediated responses of parental and resistant cell lines were compared. In contrast to the parental cell lines, p53 activation by Nutlin-3, MI-63 or ionizing radiation was not observed in either the SJSA-1 or the NGP derived cell lines. An identical TP53 mutation was subsequently identified in both of the SJSA-1 resistant lines, whilst one out of three identified mutations was common to both NGP derived lines. Mutation specific PCR revealed these mutations were present in parental SJSA-1 and NGP cell populations at a low frequency. Despite cross-resistance to a broad panel of MDM2/p53 binding antagonists, these MDM2-amplified and TP53 mutant cell lines remained sensitive to ionizing radiation (IR). These results indicate that MDM2/p53 binding antagonists will select for p53 mutations present in tumours at a low frequency at diagnosis, leading to resistance, but such tumours may nevertheless remain responsive to alternative therapies, including IR.


Assuntos
Resistencia a Medicamentos Antineoplásicos/fisiologia , Resistencia a Medicamentos Antineoplásicos/efeitos da radiação , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteína Supressora de Tumor p53/genética , Linhagem Celular Tumoral , Humanos , Mutação , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteína Supressora de Tumor p53/antagonistas & inibidores
16.
Future Med Chem ; 7(5): 631-45, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25921402

RESUMO

Potent and selective small-molecule inhibitors of the p53-MDM2 interaction intended for the treatment of p53 wild-type tumors have been designed and optimized in a number of chemical series. This review details recent disclosures of compounds in advanced optimization and features key series that have given rise to clinical trial candidates. The structure-activity relationships for inhibitor classes are discussed with reference to x-ray structures, and common structural features are identified.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Antineoplásicos/uso terapêutico , Ensaios Clínicos como Assunto , Cristalografia por Raios X , Humanos , Imidazóis/química , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Indóis/química , Indóis/farmacologia , Indóis/uso terapêutico , Modelos Moleculares , Neoplasias/metabolismo , Oxindóis , Piperazinas/química , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/química , Pirrolidinas/química , Pirrolidinas/farmacologia , Pirrolidinas/uso terapêutico , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/uso terapêutico , Relação Estrutura-Atividade , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/química , para-Aminobenzoatos/química , para-Aminobenzoatos/farmacologia , para-Aminobenzoatos/uso terapêutico
17.
Chem Biol Drug Des ; 86(2): 180-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25388787

RESUMO

Two libraries of substituted benzimidazoles were designed using a 'scaffold-hopping' approach based on reported MDM2-p53 inhibitors. Substituents were chosen following library enumeration and docking into an MDM2 X-ray structure. Benzimidazole libraries were prepared using an efficient solution-phase approach and screened for inhibition of the MDM2-p53 and MDMX-p53 protein-protein interactions. Key examples showed inhibitory activity against both targets.


Assuntos
Benzimidazóis/farmacologia , Proteínas Nucleares/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteína Supressora de Tumor p53/antagonistas & inibidores , Benzimidazóis/química , Proteínas de Ciclo Celular , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Ensaio de Imunoadsorção Enzimática , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo
18.
Biochem Soc Trans ; 42(4): 752-7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25109953

RESUMO

Various experimental strategies aim to (re)activate p53 signalling in cancer cells. The most advanced clinically are small-molecule inhibitors of the autoregulatory interaction between p53 and MDM2 (murine double minute 2). Different MDM2 inhibitors are currently under investigation in clinical trials. As for other targeted anti-cancer therapy approaches, relatively rapid resistance acquisition may limit the clinical efficacy of MDM2 inhibitors. In particular, MDM2 inhibitors were shown to induce p53 mutations in experimental systems. In the present article, we summarize what is known about MDM2 inhibitors as anti-cancer drugs with a focus on the acquisition of resistance to these compounds.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Animais , Resistencia a Medicamentos Antineoplásicos , Humanos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo
19.
Chemistry ; 20(8): 2311-7, 2014 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-24458729

RESUMO

Small-molecule drug discovery requires reliable synthetic methods for attaching amino compounds to heterocyclic scaffolds. Trifluoroacetic acid-2,2,2-trifluoroethanol (TFA-TFE) is as an effective combination for achieving SN Ar reactions between anilines and heterocycles (e.g., purines and pyrimidines) substituted with a leaving group (fluoro-, chloro-, bromo- or alkylsulfonyl). This method provides a variety of compounds containing a "kinase-privileged fragment" associated with potent inhibition of kinases. TFE is an advantageous solvent because of its low nucleophilicity, ease of removal and ability to solubilise polar substrates. Furthermore, TFE may assist the breakdown of the Meisenheimer-Jackson intermediate by solvating the leaving group. TFA is a necessary and effective acidic catalyst, which activates the heterocycle by N-protonation without deactivating the aniline by conversion into an anilinium species. The TFA-TFE methodology is compatible with a variety of functional groups and complements organometallic alternatives, which are often disadvantageous because of the expense of reagents, the frequent need to explore diverse sets of reaction conditions, and problems with product purification. In contrast, product isolation from TFA-TFE reactions is straightforward: evaporation of the reaction mixture, basification and chromatography affords analytically pure material. A total of 45 examples are described with seven discrete heterocyclic scaffolds and 2-, 3- and 4-substituted anilines giving product yields that are normally in the range 50-90 %. Reactions can be performed with either conventional heating or microwave irradiation, with the latter often giving improved yields.


Assuntos
Aminas/química , Compostos de Anilina/química , Compostos Heterocíclicos/química , Purinas/química , Pirimidinas/química , Ácido Trifluoracético/química , Trifluoretanol/química , Catálise , Micro-Ondas , Estrutura Molecular
20.
Org Biomol Chem ; 12(1): 141-8, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24213855

RESUMO

Recent studies have shown that irreversible inhibition of Nek2 kinase [(Never in mitosis gene a)-related kinase 2], overexpression of which is observed in several cancers, can be achieved using Michael acceptors containing an ethynyl group, which target the enzyme's cysteine 22 residue lying near the catalytic site. The model studies described herein demonstrate an analogous capture of the ethynyl moiety in a series of ethynyl-heterocycles (e.g. 6-ethynyl-N-phenyl-9H-purin-2-amine) by N-acetylcysteine methyl ester in the presence of 1,4-diazabicyclo[2.2.2]octane in either dimethyl sulfoxide or N,N-dimethylformamide. Kinetic studies showed a 50-fold range in reactivity with 7-ethynyl-N-phenyl-3H-[1,2,3]triazolo[4,5-d]pyrimidin-5-amine being the most reactive compound, whereas 4-ethynyl-N-phenyl-7H-pyrrolo[2,3-d]pyrimidin-2-amine was the least reactive. Studies of the isomeric compounds, 2-(3-((6-ethynyl-7-methyl-7H-purin-2-yl)amino)phenyl)acetamide and 2-(3-((6-ethynyl-9-methyl-9H-purin-2-yl)amino)phenyl)acetamide, revealed the N(7)-methyl isomer to be 5-fold more reactive than the 9-methyl isomer, which is ascribed to a buttressing effect in the N(7)-methyl compound. Comparison of the crystal structures of these isomers showed that the ethynyl group is significantly displaced away from the methyl group exclusively in the N(7)-methyl isomer with an sp(2) bond angle of 124°, whereas the corresponding angle in the N(9)-methyl isomer was the expected 120°. The results of this study indicate heterocyclic scaffolds that are likely to be more promising for inhibition of Nek2 and other kinases containing a reactive cysteine.


Assuntos
Compostos Heterocíclicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Purinas/farmacologia , Compostos de Sulfidrila/química , Cristalografia por Raios X , Compostos Heterocíclicos/química , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Quinases Relacionadas a NIMA , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Purinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...