Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dev Biol ; 238(1): 168-84, 2001 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-11784002

RESUMO

In vertebrates, BMP signaling before gastrulation suppresses neural development. Later in development, BMP signaling specifies a dorsal and ventral fate in the forebrain and dorsal fate in the spinal cord. It is therefore possible that a change in the competence of the ectoderm to respond to BMP signaling occurs at some point in development. We report that exposure of the anterior neural plate to BMP4 before gastrulation causes suppression of all neural markers tested. To determine the effects of BMP4 after gastrulation, we misexpressed BMP4 using a Pax-6 promoter fragment in transgenic frog embryos and implanted beads soaked in BMP4 in the anterior neural plate. Suppression of most anterior neural markers was observed. We conclude that most neural genes continue to require suppression of BMP signaling into the neurula stages. Additionally, we report that BMP4 and BMP7 are abundantly expressed in the prechordal mesoderm of the neurula stage embryo. This poses the paradox of how the expression of most neural genes is maintained if they can be inhibited by BMP signaling. We show that at least one gene in the anterior neural plate suppresses the response of the ectoderm to BMP signaling. We propose that the suppressive effect of BMP signaling on the expression of neural genes coupled with localized suppressors of BMP signaling result in the fine-tuning of gene expression in the anterior neural plate.


Assuntos
Animais Geneticamente Modificados , Proteínas Morfogenéticas Ósseas/metabolismo , Embrião não Mamífero/fisiologia , Gástrula/fisiologia , Neurônios/fisiologia , Transdução de Sinais , Fator de Crescimento Transformador beta , Proteínas de Xenopus , Animais , Sequência de Bases , Proteína Morfogenética Óssea 4 , Proteína Morfogenética Óssea 7 , Proteínas Morfogenéticas Ósseas/biossíntese , DNA/metabolismo , Ectoderma/metabolismo , Proteínas do Olho , Proteínas de Fluorescência Verde , Proteínas de Homeodomínio/genética , Hibridização In Situ , Proteínas Luminescentes/metabolismo , Mesoderma/metabolismo , Dados de Sequência Molecular , Crista Neural , Neurônios/metabolismo , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , RNA/metabolismo , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras , Homologia de Sequência do Ácido Nucleico , Fatores de Tempo , Fatores de Transcrição/metabolismo , Transgenes , Xenopus
2.
J Dent Res ; 80(11): 1974-9, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11759005

RESUMO

Shh expression is highly restricted to the future sites of tooth development during the initiation of odontogenesis. This suggests a role for Shh as a proliferative factor, as localized epithelial thickenings invaginate to form a tooth bud. We have investigated this role by blocking Shh signaling between E10.5 and E12.5 in murine mandibular processes using a 5E1 blocking antibody and the PKA activator Forskolin. This results in down-regulation of Ptc, a principle target of Shh signaling. The effects of inhibition varied with developmental time. At E10.5, tooth development was arrested as epithelial thickenings and the numbers of teeth developing were considerably reduced. Inhibition at E12.5 produced localized apoptosis in the epithelium at the tip of the tooth buds, although some teeth were able to develop. Thus, Shh has dual roles in early odontogenesis, first in bud formation by stimulating epithelial proliferation, and second in the development of cap-stage tooth germs by increasing epithelial cell survival.


Assuntos
Odontogênese/genética , Germe de Dente/embriologia , Transativadores/fisiologia , Animais , Bromodesoxiuridina , Divisão Celular , Sobrevivência Celular , Colforsina/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ativação Enzimática/efeitos dos fármacos , Células Epiteliais/citologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog , Marcação In Situ das Extremidades Cortadas , Camundongos , Odontogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Germe de Dente/citologia , Germe de Dente/efeitos dos fármacos , Transativadores/antagonistas & inibidores , Transativadores/genética
3.
Curr Biol ; 10(23): 1511-4, 2000 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-11114518

RESUMO

The role of fibroblast growth factors (FGFs) in neural induction is controversial [1,2]. Although FGF signalling has been implicated in early neural induction [3-5], a late role for FGFs in neural development is not well established. Indeed, it is thought that FGFs induce a precursor cell fate but are not able to induce neuronal differentiation or late neural markers [6-8]. It is also not known whether the same or distinct FGFs and FGF receptors (FGFRs) mediate the effects on mesoderm and neural development. We report that Xenopus embryos expressing ectopic FGF-8 develop an abundance of ectopic neurons that extend to the ventral, non-neural, ectoderm, but show no ectopic or enhanced notochord or somitic markers. FGF-8 inhibited the expression of an early mesoderm marker, Xbra, in contrast to eFGF, which induced ectopic Xbra robustly and neuronal differentiation weakly. The effect of FGF-8 on neurogenesis was blocked by dominant-negative FGFR-4a (DeltaXFGFR-4a). Endogenous neurogenesis was also blocked by DeltaXFGFR-4a and less efficiently by dominant-negative FGFR-1 (XFD), suggesting that it depends preferentially on signalling through FGFR-4a. The results suggest that FGF-8 and FGFR-4a signalling promotes neurogenesis and, unlike other FGFs, FGF-8 interferes with mesoderm induction. Thus, different FGFs show specificity for mesoderm induction versus neurogenesis and this may be mediated, at least in part, by the use of distinct receptors.


Assuntos
Diferenciação Celular/fisiologia , Indução Embrionária , Fatores de Crescimento de Fibroblastos/fisiologia , Mesoderma/fisiologia , Neurônios/fisiologia , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Xenopus/embriologia , Animais , Fator 8 de Crescimento de Fibroblasto , Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos , Transdução de Sinais/fisiologia , Tubulina (Proteína)/metabolismo , Xenopus/genética , Xenopus/metabolismo
4.
Development ; 127(6): 1303-14, 2000 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10683182

RESUMO

XBF-1 is an anterior neural plate-specific, winged helix transcription factor that affects neural development in a concentration-dependent manner. A high concentration of XBF-1 results in suppression of endogenous neuronal differentiation and an expansion of undifferentiated neuroectoderm. Here we investigate the mechanism by which this expansion is achieved. Our findings suggest that XBF-1 converts ectoderm to a neural fate and it does so independently of any effects on the mesoderm. In addition, we show that a high dose of XBF-1 promotes the proliferation of neuroectodermal cells while a low dose inhibits ectodermal proliferation. Thus, the neural expansion observed after high dose XBF-1 misexpression is due both to an increase in the number of ectodermal cells devoted to a neural fate and an increase in their proliferation. We show that the effect on cell proliferation is likely to be mediated by p27(XIC1), a cyclin-dependent kinase (cdk) inhibitor. We show that p27(XIC1) is expressed in a spatially restricted pattern in the embryo, including the anterior neural plate, and when misexpressed it is sufficient to block the cell cycle in vivo. We find that p27(XIC1 )is transcriptionally regulated by XBF-1 in a dose-dependent manner such that it is suppressed or ectopically induced by a high or low dose of XBF-1, respectively. However, while a low dose of XBF-1 induces ectopic p27(XIC1 )and ectopic neurons, misexpression of p27(XIC1 )does not induce ectopic neurons, suggesting that the effects of XBF-1 on cell fate and cell proliferation are distinct. Finally, we show that p27(XIC1 )is suppressed by XBF-1 in the absence of protein synthesis, suggesting that at least one component of p27(XIC1 )regulation by XBF-1 may be direct. Thus, XBF-1 is a neural-specific transcription factor that can independently affect both the cell fate choice and the proliferative status of the cells in which it is expressed.


Assuntos
Proteínas de Ciclo Celular , Proteínas Associadas aos Microtúbulos/genética , Sistema Nervoso/embriologia , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor , Proteínas de Xenopus , Xenopus laevis/embriologia , Xenopus laevis/genética , Animais , Afidicolina/farmacologia , Bromodesoxiuridina/metabolismo , Ciclo Celular , Diferenciação Celular , Divisão Celular/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p27 , Quinases Ciclina-Dependentes/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Ectoderma/citologia , Ectoderma/metabolismo , Inibidores Enzimáticos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Grupo de Alta Mobilidade/genética , Hidroxiureia/farmacologia , Proteínas Associadas aos Microtúbulos/metabolismo , Sistema Nervoso/citologia , Sistema Nervoso/metabolismo , Inibidores da Síntese de Ácido Nucleico/farmacologia , Fenótipo , Fatores de Transcrição SOXB1 , Fatores de Transcrição/metabolismo , Xenopus laevis/metabolismo
5.
Cell Mol Biol (Noisy-le-grand) ; 45(5): 567-78, 1999 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10512189

RESUMO

The Sonic Hedgehog (Shh) signalling pathway has been proposed to play an important role in mammalian tooth development. We describe the spatial and temporal expression of genes in this pathway during early tooth development and interpret these patterns in terms of the likely roles of Shh signalling. We show that the two putative receptors of the Shh ligand, Ptc and Ptch-2, localise in different cells, suggesting Shh may function in different ways as an epithelial and mesenchymal signal. Shh signalling has previously been shown, in other organs, to stimulate cell proliferation. In this paper we analyse the Fgf signalling pathway in Gli-2 mutants and propose a mechanism as to how Gli-2 may regulate cell proliferation in tooth development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas do Tecido Nervoso , Proteínas/metabolismo , Receptores Acoplados a Proteínas G , Proteínas Repressoras , Transdução de Sinais , Dente/embriologia , Transativadores , Proteínas de Xenopus , Animais , Anticorpos/farmacologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Perfilação da Expressão Gênica , Proteínas Hedgehog , Peptídeos e Proteínas de Sinalização Intracelular , Fatores de Transcrição Kruppel-Like , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos , Camundongos Mutantes , Mutação , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Receptores Patched , Receptor Patched-1 , Receptor Patched-2 , Proteínas/genética , Proteínas/imunologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptor Smoothened , Dente/efeitos dos fármacos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína GLI1 em Dedos de Zinco , Proteína Gli2 com Dedos de Zinco , Proteína Gli3 com Dedos de Zinco
6.
Genomics ; 62(3): 406-16, 1999 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-10644438

RESUMO

Protein tyrosine phosphatases (PTPs) mediate the dephosphorylation of phosphotyrosine. PTPs are known to be involved in many signal transduction pathways leading to cell growth, differentiation, and oncogenic transformation. We have cloned a new family of novel protein tyrosine phosphatase-like genes, the Ptpl (protein tyrosine phosphatase-like; proline instead of catalytic arginine) gene family. This gene family is composed of at least three members, and we describe here the developmental expression pattern and chromosomal location for one of these genes, Ptpla. In situ hybridization studies revealed that Ptpla expression was first detected at embryonic day 8.5 in muscle progenitors and later in differentiated muscle types: in the developing heart, throughout the liver and lungs, and in a number of neural crest derivatives including the dorsal root and trigeminal ganglia. Postnatally Ptpla was expressed in a number of adult tissues including cardiac and skeletal muscle, liver, testis, and kidney. The early expression pattern of this gene and its persistent expression in adult tissues suggest that it may have an important role in the development, differentiation, and maintenance of a number of different tissue types. The human homologue of Ptpla (PTPLA) was cloned and shown to map to 10p13-p14.


Assuntos
Mapeamento Cromossômico , Clonagem Molecular , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Tirosina Fosfatases/biossíntese , Proteínas Tirosina Fosfatases/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Caenorhabditis elegans , Embrião de Galinha , Cromossomos Humanos Par 10/genética , Síndrome de DiGeorge/genética , Coração/embriologia , Humanos , Hibridização in Situ Fluorescente , Fígado/embriologia , Fígado/enzimologia , Camundongos , Dados de Sequência Molecular , Família Multigênica , Músculo Esquelético/embriologia , Músculo Esquelético/enzimologia , Miocárdio/enzimologia , Especificidade de Órgãos , Homologia de Sequência de Aminoácidos , Ovinos
7.
Development ; 125(15): 2803-11, 1998 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-9655803

RESUMO

The expression of genes involved in the Sonic Hedgehog signalling pathway, including Shh, Ptc, Smo, Gli1, Gli2 and Gli3, were found to be expressed in temporal and spatial patterns during early murine tooth development, suggestive of a role in early tooth germ initiation and subsequent epithelial-mesenchymal interactions. Of these Ptc, Smo, Gli1, Gli2 and Gli3 were expressed in epithelium and mesenchyme whereas Shh was only detected in epithelium. This suggests that Shh is involved in both lateral (epithelial-mesenchymal) and planar (epithelial-epithelial) signalling in early tooth development. Ectopic application of Shh protein to mandibular mesenchyme induced the expression of Ptc and Gli1. Addition of exogenous Shh protein directly into early tooth germs and adjacent to tooth germs, resulted in abnormal epithelial invagination, indicative of a role for Shh in epithelial cell proliferation. In order to assess the possible role of this pathway, tooth development in Gli2 and Gli3 mutant embryos was investigated. Gli2 mutants were found to have abnormal development of maxillary incisors, probably resulting from a mild holoprosencephaly, whereas Gli3 mutants had no major tooth abnormalities. Gli2/Gli3 double homozygous mutants did not develop any normal teeth and did not survive beyond embryonic day 14.5; however, Gli2(-/-); Gli3(+/-) did survive until birth and had small molars and mandibular incisors whereas maxillary incisor development was arrested as a rudimentary epithelial thickening. These results show an essential role for Shh signalling in tooth development that involves functional redundancy of downstream Gli genes.


Assuntos
Indução Embrionária , Proteínas do Tecido Nervoso , Proteínas/metabolismo , Proteínas Repressoras , Dente/embriologia , Transativadores , Fatores de Transcrição/metabolismo , Proteínas de Xenopus , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células Epiteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog , Incisivo/anormalidades , Fatores de Transcrição Kruppel-Like , Mandíbula/embriologia , Proteínas de Membrana/metabolismo , Mesoderma/metabolismo , Camundongos , Camundongos Mutantes , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Receptores Patched , Receptor Patched-1 , Receptores de Superfície Celular , Germe de Dente/embriologia , Fatores de Transcrição/genética , Proteína GLI1 em Dedos de Zinco , Proteína Gli2 com Dedos de Zinco , Proteína Gli3 com Dedos de Zinco
8.
Development ; 124(23): 4811-8, 1997 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9428417

RESUMO

The molecular events of odontogenic induction are beginning to be elucidated, but until now nothing was known about the molecular basis of the patterning of the dentition. A role for Dlx-1 and Dlx-2 genes in patterning of the dentition has been proposed with the genes envisaged as participating in an 'odontogenic homeobox gene code' by specifying molar development. This proposal was based on the restricted expression of the genes in molar ectomesenchyme derived from cranial neural crest cells prior to tooth initiation. Mice with targeted null mutations of both Dlx-1 and Dlx-2 homeobox genes do not develop maxillary molar teeth but incisors and mandibular molars are normal. We have carried out heterologous recombinations between mutant and wild-type maxillary epithelium and mesenchyme and show that the ectomesenchyme underlying the maxillary molar epithelium has lost its odontogenic potential. Using molecular markers of branchial arch neural crest (Barx1) and commitment to chondrogenic differentiation (Sox9), we show that this population alters its fate from odontogenic to become chondrogenic. These results provide evidence that a subpopulation of cranial neural crest is specified as odontogenic by Dlx-1 and Dlx-2 genes. Loss of function of these genes results in reprogramming of this population of ectomesenchyme cells into chondrocytes. This is the first indication that the development of different shaped teeth at different positions in the jaws is determined by independent genetic pathways.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Proteínas de Homeodomínio/fisiologia , Odontogênese/genética , Animais , Proteínas do Citoesqueleto , Epitélio/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Masculino , Maxila/embriologia , Mesoderma , Camundongos , Camundongos Mutantes , Dente Molar/embriologia , Dente Molar/crescimento & desenvolvimento , Mutação , Proteínas de Ligação a RNA , Recombinação Genética , Fatores de Transcrição SOX9 , Dente/embriologia , Dente/crescimento & desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA