Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(2): 355-374, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36131677

RESUMO

Rivers suffer from multiple stressors acting simultaneously on their biota, but the consequences are poorly quantified at the global scale. We evaluated the biological condition of rivers globally, including the largest proportion of countries from the Global South published to date. We gathered macroinvertebrate- and fish-based assessments from 72,275 and 37,676 sites, respectively, from 64 study regions across six continents and 45 nations. Because assessments were based on differing methods, different systems were consolidated into a 3-class system: Good, Impaired, or Severely Impaired, following common guidelines. The proportion of sites in each class by study area was calculated and each region was assigned a Köppen-Geiger climate type, Human Footprint score (addressing landscape alterations), Human Development Index (HDI) score (addressing social welfare), % rivers with good ambient water quality, % protected freshwater key biodiversity areas; and % of forest area net change rate. We found that 50% of macroinvertebrate sites and 42% of fish sites were in Good condition, whereas 21% and 29% were Severely Impaired, respectively. The poorest biological conditions occurred in Arid and Equatorial climates and the best conditions occurred in Snow climates. Severely Impaired conditions were associated (Pearson correlation coefficient) with higher HDI scores, poorer physico-chemical water quality, and lower proportions of protected freshwater areas. Good biological conditions were associated with good water quality and increased forested areas. It is essential to implement statutory bioassessment programs in Asian, African, and South American countries, and continue them in Oceania, Europe, and North America. There is a need to invest in assessments based on fish, as there is less information globally and fish were strong indicators of degradation. Our study highlights a need to increase the extent and number of protected river catchments, preserve and restore natural forested areas in the catchments, treat wastewater discharges, and improve river connectivity.


Assuntos
Ecossistema , Monitoramento Ambiental , Animais , Humanos , Monitoramento Ambiental/métodos , Rios , Peixes , Qualidade da Água , Biodiversidade , Invertebrados
3.
Water (Basel) ; 13(3): 371, 2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33868721

RESUMO

The biological assessment of rivers i.e., their assessment through use of aquatic assemblages, integrates the effects of multiple-stressors on these systems over time and is essential to evaluate ecosystem condition and establish recovery measures. It has been undertaken in many countries since the 1990s, but not globally. And where national or multi-national monitoring networks have gathered large amounts of data, the poor water body classifications have not necessarily resulted in the rehabilitation of rivers. Thus, here we aimed to identify major gaps in the biological assessment and rehabilitation of rivers worldwide by focusing on the best examples in Asia, Europe, Oceania, and North, Central, and South America. Our study showed that it is not possible so far to draw a world map of the ecological quality of rivers. Biological assessment of rivers and streams is only implemented officially nation-wide and regularly in the European Union, Japan, Republic of Korea, South Africa, and the USA. In Australia, Canada, China, New Zealand, and Singapore it has been implemented officially at the state/province level (in some cases using common protocols) or in major catchments or even only once at the national level to define reference conditions (Australia). In other cases, biological monitoring is driven by a specific problem, impact assessments, water licenses, or the need to rehabilitate a river or a river section (as in Brazil, South Korea, China, Canada, Japan, Australia). In some countries monitoring programs have only been explored by research teams mostly at the catchment or local level (e.g., Brazil, Mexico, Chile, China, India, Malaysia, Thailand, Vietnam) or implemented by citizen science groups (e.g., Southern Africa, Gambia, East Africa, Australia, Brazil, Canada). The existing large-extent assessments show a striking loss of biodiversity in the last 2-3 decades in Japanese and New Zealand rivers (e.g., 42% and 70% of fish species threatened or endangered, respectively). A poor condition (below Good condition) exists in 25% of South Korean rivers, half of the European water bodies, and 44% of USA rivers, while in Australia 30% of the reaches sampled were significantly impaired in 2006. Regarding river rehabilitation, the greatest implementation has occurred in North America, Australia, Northern Europe, Japan, Singapore, and the Republic of Korea. Most rehabilitation measures have been related to improving water quality and river connectivity for fish or the improvement of riparian vegetation. The limited extent of most rehabilitation measures (i.e., not considering the entire catchment) often constrains the improvement of biological condition. Yet, many rehabilitation projects also lack pre-and/or post-monitoring of ecological condition, which prevents assessing the success and shortcomings of the recovery measures. Economic constraints are the most cited limitation for implementing monitoring programs and rehabilitation actions, followed by technical limitations, limited knowledge of the fauna and flora and their life-history traits (especially in Africa, South America and Mexico), and poor awareness by decision-makers. On the other hand, citizen involvement is recognized as key to the success and sustainability of rehabilitation projects. Thus, establishing rehabilitation needs, defining clear goals, tracking progress towards achieving them, and involving local populations and stakeholders are key recommendations for rehabilitation projects (Table 1). Large-extent and long-term monitoring programs are also essential to provide a realistic overview of the condition of rivers worldwide. Soon, the use of DNA biological samples and eDNA to investigate aquatic diversity could contribute to reducing costs and thus increase monitoring efforts and a more complete assessment of biodiversity. Finally, we propose developing transcontinental teams to elaborate and improve technical guidelines for implementing biological monitoring programs and river rehabilitation and establishing common financial and technical frameworks for managing international catchments. We also recommend providing such expert teams through the United Nations Environment Program to aid the extension of biomonitoring, bioassessment, and river rehabilitation knowledge globally.

4.
mBio ; 11(5)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873755

RESUMO

The discovery of cruciviruses revealed the most explicit example of a common protein homologue between DNA and RNA viruses to date. Cruciviruses are a novel group of circular Rep-encoding single-stranded DNA (ssDNA) (CRESS-DNA) viruses that encode capsid proteins that are most closely related to those encoded by RNA viruses in the family Tombusviridae The apparent chimeric nature of the two core proteins encoded by crucivirus genomes suggests horizontal gene transfer of capsid genes between DNA and RNA viruses. Here, we identified and characterized 451 new crucivirus genomes and 10 capsid-encoding circular genetic elements through de novo assembly and mining of metagenomic data. These genomes are highly diverse, as demonstrated by sequence comparisons and phylogenetic analysis of subsets of the protein sequences they encode. Most of the variation is reflected in the replication-associated protein (Rep) sequences, and much of the sequence diversity appears to be due to recombination. Our results suggest that recombination tends to occur more frequently among groups of cruciviruses with relatively similar capsid proteins and that the exchange of Rep protein domains between cruciviruses is rarer than intergenic recombination. Additionally, we suggest members of the stramenopiles/alveolates/Rhizaria supergroup as possible crucivirus hosts. Altogether, we provide a comprehensive and descriptive characterization of cruciviruses.IMPORTANCE Viruses are the most abundant biological entities on Earth. In addition to their impact on animal and plant health, viruses have important roles in ecosystem dynamics as well as in the evolution of the biosphere. Circular Rep-encoding single-stranded (CRESS) DNA viruses are ubiquitous in nature, many are agriculturally important, and they appear to have multiple origins from prokaryotic plasmids. A subset of CRESS-DNA viruses, the cruciviruses, have homologues of capsid proteins encoded by RNA viruses. The genetic structure of cruciviruses attests to the transfer of capsid genes between disparate groups of viruses. However, the evolutionary history of cruciviruses is still unclear. By collecting and analyzing cruciviral sequence data, we provide a deeper insight into the evolutionary intricacies of cruciviruses. Our results reveal an unexpected diversity of this virus group, with frequent recombination as an important determinant of variability.


Assuntos
Vírus de DNA/classificação , Mineração de Dados , Genoma Viral , Metagenoma , Proteínas do Capsídeo/genética , Vírus de DNA/genética , Metagenômica , Vírus de RNA/classificação , Vírus de RNA/genética , Tombusviridae/classificação , Tombusviridae/genética
5.
Ecology ; 101(9): e03102, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32455492

RESUMO

Understanding what makes food webs stable has long been a goal of ecologists. Topological structure and the distribution and magnitude of interaction strengths in food webs have been shown to confer important stabilizing properties. However, our understanding of how variable species interactions affect food-web structure and stability is still in its infancy. Anthropogenic stress, such as acid mine drainage, is likely to place severe limitations on the food-web structures availabe, due to changes in community composition and body mass distributions. Here, we used mechanistic models to infer food-web structure and quantify stability in streams across a gradient of acid mine drainage. Multiple food webs were iterated for each community based on species pairwise interaction probabilities, in order to incorporate the variability of realistic food-web structure. We found that food-web structure was altered systematically with a 32-fold decrease in the number of links and a twofold increase in connectance across the gradient. Stability generally increased sixfold with increasing acid mine drainage stress, regardless of how interaction strengths were estimated. However, the distribution of the stability measure, s, for some impacted communities separated into clusters of higher and lower magnitude depending on how interaction strengths were estimated. Management and restoration of impacted sites needs to consider their increased stability, as this may have important implications for the recolonization of desirable species. Furthermore, active species introductions may be required to overcome the internal ecological inertia of affected communities.


Assuntos
Cadeia Alimentar , Rios , Modelos Biológicos
6.
J Anim Ecol ; 89(3): 730-744, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31691281

RESUMO

Natural and anthropogenic disturbances commonly alter patterns of biodiversity and ecosystem functioning. However, how networks of interacting species respond to these changes remains poorly understood. We described aquatic food webs using invertebrate and fish community composition, functional traits and stable isotopes from twelve agricultural streams along a landscape disturbance gradient. We predicted that excessive deposition of fine inorganic sediment (sedimentation) associated with agricultural activities would negatively influence aquatic trophic diversity (e.g. reduced vertical and horizontal trophic niche breadths). We hypothesized that multiple mechanisms might cause trophic niche 'compression', as indicated by changes in realized trophic roles. Food-web properties based on consumer stable isotope data (δ13 C and δ15 N) showed that increasing sediment disturbance was associated with reduced trophic diversity. In particular, the aquatic invertebrate community occupied a smaller area in isotopic niche space along the sedimentation gradient that was best explained by a narrowing of the invertebrate community δ13 C range. Decreased niche partitioning, driven by increasing habitat homogeneity, environmental filtering and resource scarcity all seemingly lead to greater trophic equivalency caused by the collapse of the autochthonous food-web channel. Bayesian mixing-model analyses supported this contention with invertebrate consumers increasingly reliant on detritus along the sedimentation gradient, and predatory invertebrates relying more on the prey using these basal resources. The narrowing of the fish community δ13 C range along the sedimentation gradient contributed to an apparent 'trophic shift' towards terrestrial carbon, further indicating the loss of the autochthonous food-web channel. On the vertical trophic niche axis, fish became increasingly separated from aquatic invertebrates with an increase in their estimated trophic position. In combination, these responses were most likely mediated through reduced fish densities and a diminished reliance on aquatic prey. Although species losses remain a major threat to ecosystem integrity, the functional roles of biota that persist dictate how food webs and ecosystem functioning respond to environmental change. Sedimentation was associated with nonlinear reductions in trophic diversity which could affect the functioning and stability of aquatic ecosystems. Our study helps explain how multiple mechanisms may radically reshape food-web properties in response to this type of disturbance.


Assuntos
Ecossistema , Cadeia Alimentar , Animais , Teorema de Bayes , Biodiversidade , Invertebrados , Isótopos de Nitrogênio/análise
7.
FEMS Microbiol Lett ; 366(8)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31077309

RESUMO

Baseline studies are needed to identify environmental reservoirs of non-pathogenic but associating microbiota or pathogenic bacteria that are resistant to antibiotics and to inform safe use of freshwater ecosystems in urban and agricultural settings. Mesophilic bacteria and Escherichia coli were quantified and isolated from water and sediments of two rivers, one in an urban and one in an agricultural area near Christchurch, New Zealand. Resistance of E. coli to one or more of nine different antibiotics was determined. Additionally, selected strains were tested for conjugative transfer of resistances. Despite having similar concentrations of mesophilic bacteria and E. coli, the rivers differed in numbers of antibiotic-resistant E. coli isolates. Fully antibiotic-susceptible and -resistant strains coexist in the two freshwater ecosystems. This study was the first phase of antibiotic resistance profiling in an urban setting and an intensifying dairy agroecosystem. Antibiotic-resistant E. coli may pose different ingestion and contact risks than do susceptible E. coli. This difference cannot be seen in population counts alone. This is an important finding for human health assessments of freshwater systems, particularly where recreational uses occur downstream.


Assuntos
Agricultura , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Rios/microbiologia , Reforma Urbana , Reservatórios de Doenças/microbiologia , Farmacorresistência Bacteriana Múltipla , Escherichia coli/isolamento & purificação , Testes de Sensibilidade Microbiana , Nova Zelândia , Prevalência , Microbiologia da Água
8.
Sci Total Environ ; 671: 119-128, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-30928741

RESUMO

Excessive nutrient loading from small agricultural headwaters can substantially degrade downstream water quality and ecological conditions. But, our understanding of the scales and locations to implement nutrient attenuation tools within these catchments is poor. To help inform farm- and catchment-scale management, we quantified nitrate export in nine one-kilometre-long lowland agricultural headwaters fed by tile and open tributary drains in a region with high groundwater nitrate (<1 to >15 mg L-1 NO3-N) over four years. Across-catchment differences in upstream spring water nitrate concentrations predicted differences in annual nitrate loads at catchment outlets (range <1-72 megagrams NO3-N 365 d-1), and nitrate loads were higher in wet seasons and wet years, reflecting strong groundwater influences. Partitioning the sources of variability in catchment nitrate fluxes revealed that ~60% of variation was accounted for by a combination of fluxes from up-stream springs and contributions from tile and open tributary drains (46% and 15%, respectively), with ~40% of unexplained residual variation likely due to groundwater upwellings. Although tile and open tributary drains contributed comparatively less to catchment loads (tile drains: <0.01 and up to 50 kg NO3-N d-1; open drains: <5 kg and up to 100 kg NO3-N d-1), mitigation targeted at these localised, farm-scale sources will contribute to decreasing downstream nitrate fluxes. However, high nitrate loads from groundwater mean current NO3-N waterway management and rehabilitation practices targeting waterway stock exclusion by fencing alone will be insufficient to reduce annual NO3-N export. Moreover, managing catchment nutrient fluxes will need to acknowledge contributions from groundwater as well as farm-scale losses from land. Overall, our results highlight how nutrient fluxes in spring-fed waterways can be highly dynamic, dominated more by groundwater than local run-off, and point to the scales and locations where nitrate attenuation tools should be implemented.

9.
Sci Total Environ ; 574: 148-154, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27627690

RESUMO

Endemic Westland petrels (Procellaria westlandica) are a remnant of extensive seabird populations that occupied the forested hill country of prehuman New Zealand. Because seabird guano is rich in Se, an often-deficient essential element, we proposed that Westland petrels enhance Se concentrations in ecosystems associated with their breeding grounds. We sampled terrestrial (soil, plants, riparian spiders) and freshwater (benthic invertebrates, fish) components from Westland petrel-enriched and non-seabird forests on the western coast of New Zealand's South Island, an area characterised by highly leached, nutrient-poor soils. Median seabird soil Se was an order of magnitude higher than soil from non-seabird sites (2.2mgkg-1 compared to 0.2mgkg-1), but corresponding plant foliage concentrations (0.06mgkg-1; 0.05mgkg-1) showed no difference between seabird and non-seabird sites. In streams, Se ranged from 0.05mgkg-1 (riparian foliage) to 3.1mgkg-1 (riparian spiders and freshwater mussels). However, there was no difference between seabird and non-seabird streams. Stoichiometric ratios (N:Se, P:Se) showed Se loss across all ecosystem components relative to seabird guano, except in seabird colony soil where N was lost preferentially. Seabirds therefore did not enrich the terrestrial plants and associated stream ecosystems in Se. We conclude that incorporation of trace elements brought ashore by seabirds cannot be assumed, even though seabirds are a significant source of marine-derived nutrients and trace elements to coastal ecosystems world-wide.


Assuntos
Aves , Ecossistema , Monitoramento Ambiental , Cadeia Alimentar , Selênio/metabolismo , Animais , Florestas , Nova Zelândia
10.
J Environ Qual ; 45(3): 866-72, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27136152

RESUMO

Around the world, artificially drained agricultural lands are significant sources of reactive nitrogen to stream ecosystems, creating substantial stream health problems. One management strategy is the deployment of denitrification enhancement tools. Here, we evaluate the factors affecting the potential of denitrifying bioreactors to improve stream health and ecosystem services. The performance of bioreactors and the structure and functioning of stream biotic communities are linked by environmental parameters like dissolved oxygen and nitrate-nitrogen concentrations, dissolved organic carbon availability, flow and temperature regimes, and fine sediment accumulations. However, evidence of bioreactors' ability to improve waterway health and ecosystem services is lacking. To improve the potential of bioreactors to enhance desirable stream ecosystem functioning, future assessments of field-scale bioreactors should evaluate the influences of bioreactor performance on ecological indicators such as primary production, organic matter processing, stream metabolism, and invertebrate and fish assemblage structure and function. These stream health impact assessments should be conducted at ecologically relevant spatial and temporal scales. Bioreactors have great potential to make significant contributions to improving water quality, stream health, and ecosystem services if they are tailored to site-specific conditions and implemented strategically with land-based and stream-based mitigation tools within watersheds. This will involve combining economic, logistical, and ecological information in their implementation.


Assuntos
Reatores Biológicos , Desnitrificação , Ecologia , Animais , Ecossistema , Nitratos , Rios
11.
Infect Genet Evol ; 39: 304-316, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26873065

RESUMO

Over the last five years next-generation sequencing has become a cost effective and efficient method for identifying known and unknown microorganisms. Access to this technique has dramatically changed the field of virology, enabling a wide range of environmental viral metagenome studies to be undertaken of organisms and environmental samples from polar to tropical regions. These studies have led to the discovery of hundreds of highly divergent single stranded DNA (ssDNA) virus-like sequences encoding replication-associated proteins. Yet, few studies have explored how viruses might be shared in an ecosystem through feeding relationships. Here we identify 169 circular molecules (160 CRESS DNA molecules, nine circular molecules) recovered from a New Zealand freshwater lake, that we have tentatively classified into 51 putatively novel species and five previously described species (DflaCV-3, -5, -6, -8, -10). The CRESS DNA viruses identified in this study were recovered from molluscs (Echyridella menzeisii, Musculium novaezelandiae, Potamopyrgus antipodarum and Physella acuta) and insect larvae (Procordulia grayi, Xanthocnemis zealandica, and Chironomus zealandicus) collected from Lake Sarah, as well as from the lake water and benthic sediments. Extensive diversity was observed across most CRESS DNA molecules recovered. The putative capsid protein of one viral species was found to be most similar to those of members of the Tombusviridae family, thus expanding the number of known RNA-DNA hybrid viruses in nature. We noted a strong association between the CRESS DNA viruses and circular molecules identified in the water and browser organisms (C. zealandicus, P. antipodarum and P. acuta), and between water sediments and undefended prey species (C. zealandicus). However, we were unable to find any significant correlation of viral assemblages to the potential feeding relationships of the host aquatic invertebrates.


Assuntos
Vírus de DNA/fisiologia , DNA Circular , DNA Viral , Ecossistema , Invertebrados/virologia , Lagos/microbiologia , Replicação Viral , Motivos de Aminoácidos , Animais , Sequência Conservada , Vírus de DNA/classificação , Genoma Viral , Fases de Leitura Aberta , Filogenia , Proteínas Virais/química , Proteínas Virais/genética
12.
Environ Manage ; 57(3): 711-21, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26467674

RESUMO

Coal mining activities can have severe and long-term impacts on freshwater ecosystems. At the individual stream scale, these impacts have been well studied; however, few attempts have been made to determine the predictors of mine impacts at a regional scale. We investigated whether catchment-scale measures of mining impacts could be used to predict biological responses. We collated data from multiple studies and analyzed algae, benthic invertebrate, and fish community data from 186 stream sites, including un-mined streams, and those associated with 620 mines on the West Coast of the South Island, New Zealand. Algal, invertebrate, and fish richness responded to mine impacts and were significantly higher in un-mined compared to mine-impacted streams. Changes in community composition toward more acid- and metal-tolerant species were evident for algae and invertebrates, whereas changes in fish communities were significant and driven by a loss of nonmigratory native species. Consistent catchment-scale predictors of mining activities affecting biota included the time post mining (years), mining density (the number of mines upstream per catchment area), and mining intensity (tons of coal production per catchment area). Mining was associated with a decline in stream biodiversity irrespective of catchment size, and recovery was not evident until at least 30 years after mining activities have ceased. These catchment-scale predictors can provide managers and regulators with practical metrics to focus on management and remediation decisions.


Assuntos
Biodiversidade , Minas de Carvão , Monitoramento Ambiental , Animais , Ecossistema , Peixes , Previsões , Invertebrados , Nova Zelândia , Plantas , Dinâmica Populacional , Rios
13.
Infect Genet Evol ; 31: 284-95, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25697886

RESUMO

Our understanding of the diversity and abundance of circular replication associated protein (Rep) - encoding single stranded (CRESS) DNA viruses has increased considerably over the last few years due to a combination of modern sequencing technologies and new molecular tools. Studies have used these to identify and recover CRESS DNA viruses from a range of different marine organisms, including copepods, shrimp and molluscs. In our study we identified 79 novel CRESS DNA viruses from three mollusc species (Austrovenus stutchburyi, Paphies subtriangulata and Amphibola crenata) and benthic sediments from the Avon-Heathcote estuary in Christchurch, New Zealand. The genomes recovered have varying genome architectures, with all encoding at least two major ORFs that have either unidirectional or bidirectional organisation. Analysis of the Reps of the viral genomes showed they are all highly diverse, with only one Rep sequence sharing 65% amino acid identity with the Rep of gastropod-associated circular DNA virus (GaCSV). Our study adds significantly to the wealth of CRESS DNA viruses recovered from freshwater and marine environments and extends our knowledge of the distribution of these viruses.


Assuntos
Vírus de DNA/genética , DNA Circular , Genoma Viral , Moluscos/virologia , Motivos de Aminoácidos , Animais , Análise por Conglomerados , Vírus de DNA/classificação , Ordem dos Genes , Genes Virais , Geografia , Sequenciamento de Nucleotídeos em Larga Escala , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia
14.
Environ Monit Assess ; 187(1): 4132, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25487459

RESUMO

Water quality agencies and scientists are increasingly adopting standardized sampling methodologies because of the challenges associated with interpreting data derived from dissimilar protocols. Here, we compare 13 protocols for monitoring streams from different regions and countries around the globe. Despite the spatially diverse range of countries assessed, many aspects of bioassessment structure and protocols were similar, thereby providing evidence of key characteristics that might be incorporated in a global sampling methodology. Similarities were found regarding sampler type, mesh size, sampling period, subsampling methods, and taxonomic resolution. Consistent field and laboratory methods are essential for merging data sets collected by multiple institutions to enable large-scale comparisons. We discuss the similarities and differences among protocols and present current trends and future recommendations for monitoring programs, especially for regions where large-scale protocols do not yet exist. We summarize the current state in one of these regions, Latin America, and comment on the possible development path for these techniques in this region. We conclude that several aspects of stream biomonitoring need additional performance evaluation (accuracy, precision, discriminatory power, relative costs), particularly when comparing targeted habitat (only the commonest habitat type) versus site-wide sampling (multiple habitat types), appropriate levels of sampling and processing effort, and standardized indicators to resolve dissimilarities among biomonitoring methods. Global issues such as climate change are creating an environment where there is an increasing need to have universally consistent data collection, processing and storage to enable large-scale trend analysis. Biomonitoring programs following standardized methods could aid international data sharing and interpretation.


Assuntos
Monitoramento Ambiental/métodos , Invertebrados/crescimento & desenvolvimento , Rios/química , Animais , Organismos Aquáticos/classificação , Organismos Aquáticos/crescimento & desenvolvimento , Organismos Aquáticos/metabolismo , Biodiversidade , Mudança Climática , Ecossistema , Meio Ambiente , Humanos , Invertebrados/classificação , Invertebrados/metabolismo
15.
Infect Genet Evol ; 22: 134-41, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24462907

RESUMO

Recent advances in sequencing and metagenomics have enabled the discovery of many novel single stranded DNA (ssDNA) viruses from various environments. We have previously demonstrated that adult dragonflies, as predatory insects, are useful indicators of ssDNA viruses in terrestrial ecosystems. Here we recover and characterise 13 viral genomes which represent 10 novel and diverse circular replication associated protein (Rep)-encoding single stranded (CRESS) DNA viruses (1628-2668nt) from Procordulia grayi and Xanthocnemis zealandica dragonfly larvae collected from four high-country lakes in the South Island of New Zealand. The dragonfly larvae associated CRESS DNA viruses have different genome architectures, however, they all encode two major open reading frames (ORFs) which either have bidirectional or unidirectional arrangement. The 13 viral genomes have a conserved NAGTATTAC nonanucleotide motif and in their predicted Rep proteins we identified the rolling circle replication (RCR) motif 1, 2 and 3, as well as superfamily 3 (SF3) helicase motifs. Maximum likelihood phylogenetic and pairwise identity analysis of the Rep amino acid sequences reveal that the dragonfly larvae novel CRESS DNA viruses share <63% pairwise amino acid identity to the Reps of other CRESS DNA viruses whose complete genomes have been determined and available in public databases and that these viruses are novel. CRESS DNA viruses are circulating in larval dragonfly populations; however, we are unable to ascertain whether these viruses are infecting the larvae directly or are transient within dragonflies via their diet.


Assuntos
Vírus de DNA , DNA Circular , Larva/virologia , Metagenômica/métodos , Odonatos/virologia , Animais , Vírus de DNA/classificação , Vírus de DNA/genética , Vírus de DNA/isolamento & purificação , DNA Circular/classificação , DNA Circular/genética , DNA Circular/isolamento & purificação , Filogenia , Análise de Sequência de DNA
16.
Ecol Appl ; 23(5): 1036-47, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23967573

RESUMO

Agricultural land uses can impact stream ecosystems by reducing suitable habitat, altering flows, and increasing inputs of diffuse pollutants including fine inorganic sediment (< 2 mm). These changes have been linked to altered community composition and declines in biodiversity. Determining the mechanisms driving stream biotic responses, particularly threshold impacts, has, however, proved elusive. To investigate a sediment threshold response by benthic invertebrates, an intensive survey of 30 agricultural streams was conducted along gradients of deposited sediment and dissolved nutrients. Partial redundancy analysis showed that invertebrate community composition changed significantly along the gradient of deposited fine sediment, whereas the effect of dissolved nitrate was weak. Pollution-sensitive invertebrates (%EPT, Ephemeroptera, Plecoptera, Trichoptera) demonstrated a strong nonlinear response to sediment, and change-point analysis indicated marked declines beyond a threshold of -20% fine sediment covering the streambed. Structural equation modeling indicated that decreased habitat availability (i.e., coarse substrate and associated interstices) was the key driver affecting pollution-sensitive invertebrates, with degraded riparian condition controlling resources through direct (e.g., inputs) and indirect (e.g., flow-mediated) effects on deposited sediment. The identification of specific effects thresholds and the underlying mechanisms (e.g., loss of habitat) driving these changes will assist managers in setting sediment criteria and standards to better guide stream monitoring and rehabilitation.


Assuntos
Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos , Invertebrados/fisiologia , Rios , Agricultura , Animais , Conservação dos Recursos Naturais , Movimentos da Água
17.
Genome Announc ; 1(4)2013 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-23929472

RESUMO

In samples of benthic and bank river sediments of two urban rivers in Christchurch city (New Zealand), we identified and recovered isolates of Sclerotinia sclerotiorum hypovirulence-associated virus-1 (SsHADV-1), a fungus-infecting circular single-stranded DNA virus. This is the first report of SsHADV-1 outside of China and in environmental samples.

18.
Environ Pollut ; 182: 190-200, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23920316

RESUMO

In February 2011 a MW 6.3 earthquake in Christchurch, New Zealand inundated urban waterways with sediment from liquefaction and triggered sewage spills. The impacts of, and recovery from, this natural disaster on the stream biogeochemistry and biology were assessed over six months along a longitudinal impact gradient in an urban river. The impact of liquefaction was masked by earthquake triggered sewage spills (~20,000 m(3) day(-1) entering the river for one month). Within 10 days of the earthquake dissolved oxygen in the lowest reaches was <1 mg l(-1), in-stream denitrification accelerated (attenuating 40-80% of sewage nitrogen), microbial biofilm communities changed, and several benthic invertebrate taxa disappeared. Following sewage system repairs, the river recovered in a reverse cascade, and within six months there were no differences in water chemistry, nutrient cycling, or benthic communities between severely and minimally impacted reaches. This study highlights the importance of assessing environmental impact following urban natural disasters.


Assuntos
Ecossistema , Monitoramento Ambiental , Rios/química , Poluentes Químicos da Água/análise , Animais , Terremotos , Invertebrados/classificação , Nova Zelândia
19.
Genome Announc ; 1(3)2013 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-23723397

RESUMO

Two complete genomes of starling circovirus (StCV) were recovered from Amphibola crenata, an estuarine New Zealand mollusc. This is the first report of StCV outside Europe. The viral genomes were recovered from rolling circle-amplified enriched circular DNA followed by back-to-back primers and specific primer PCR amplification.

20.
J Gen Virol ; 94(Pt 5): 1104-1110, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23364192

RESUMO

Over the past couple of years highly diverse novel ssDNA viruses have been discovered. Here, we present the first ssDNA virus, Gastropod-associated circular ssDNA virus (GaCSV), recovered from a mollusc Amphibola crenata Martyn 1784, which is a deposit feeder that grazes micro-organisms and organic detritus on the surface of tidal mudflats. The GaCSV (2351 nt) genome contains two large bidirectionally transcribed ORFs. The smaller ORF (874 nt) has similarities to viral replication-associated protein (Rep) sequences of some bacteria and circoviruses, whereas the larger ORF (955 nt) does not relate to any sequences in public databases and we presume it potentially encodes the capsid protein. Phylogenetic analysis shows that the GaCSV Rep clusters with Rep-like sequences of bacterial origin, highlighting the role of ssDNA viruses in horizontal gene transfer. The occurrence of previously unknown viruses in organisms associated with human pollution is a relatively unexplored field.


Assuntos
Vírus de DNA/isolamento & purificação , DNA de Cadeia Simples/genética , DNA Viral/genética , Gastrópodes/virologia , Genoma Viral/genética , Proteínas Virais/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Sequência de Bases , Vírus de DNA/classificação , Vírus de DNA/genética , Estuários , Humanos , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Filogenia , Análise de Sequência de DNA , Poluentes do Solo , Replicação Viral/genética , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...