Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Immun ; 92(3): e0045523, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38289122

RESUMO

Melioidosis is a disease that is difficult to treat due to the causative organism, Burkholderia pseudomallei being inherently antibiotic resistant and it having the ability to invade, survive, and replicate in an intracellular environment. Combination therapy approaches are routinely being evaluated in animal models with the aim of improving the level of protection and clearance of colonizing bacteria detected. In this study, a subunit vaccine layered with the antibiotic finafloxacin was evaluated in vivo against an inhalational infection with B. pseudomallei in Balb/c mice. Groups of mice vaccinated, infected, and euthanized at antibiotic initiation had a reduced bacterial load compared to those that had not been immunized. In addition, the subunit vaccine provided a synergistic effect when it was delivered with a CpG ODN and finafloxacin was initiated at 48 h post-challenge. Vaccination was also shown to improve the outcome, in a composite measure of survival and clearance. In summary, layering a subunit vaccine with the antibiotic finafloxacin is a promising therapeutic alternative for use in the treatment of B. pseudomallei infections.


Assuntos
Burkholderia pseudomallei , Melioidose , Animais , Camundongos , Camundongos Endogâmicos BALB C , Melioidose/tratamento farmacológico , Melioidose/prevenção & controle , Antibacterianos/uso terapêutico , Vacinação , Vacinas de Subunidades Antigênicas , Modelos Animais de Doenças
2.
PLoS One ; 18(12): e0292645, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38113233

RESUMO

Previous work indicated that the incidence of travellers' diarrhoea (TD) is higher in soldiers of British origin, when compared to soldiers of Nepalese descent (Gurkhas). We hypothesise that the composition of the gut microbiota may be a contributing factor in the risk of developing TD in soldiers of British origin. This study aimed to characterise the gut microbial composition of Gurkha and non-Gurkha soldiers of the British Army. Recruitment of 38 soldiers (n = 22 Gurkhas, n = 16 non-Gurkhas) and subsequent stool collection, enabled shotgun metagenomic sequencing-based analysis of the gut microbiota. The microbiota of Gurkhas had significantly (P < 0.05) lower diversity, for both Shannon and Simpson diversity indices, using species level markers than the gut microbiota of non-Gurkha soldiers. Non-metric Multidimensional Scaling (NMDS) of the Bray-Curtis distance matrix revealed a significant difference in the composition of the gut microbiota between Gurkhas and non-Gurkha soldiers, at both the species level (P = 0.0178) and the genus level (P = 0.0483). We found three genera and eight species that were significantly enriched in the non-Gurkha group and one genus (Haemophilus) and one species (Haemophilus parainfluenzae) which were enriched in the Gurkha group. The difference in the microbiota composition between Gurkha soldiers and soldiers of British origin may contribute to higher colonization resistance against diarrhoeal pathogens in the former group. Our findings may enable further studies into interventions that modulate the gut microbiota of soldiers to prevent TD during deployment.


Assuntos
Microbioma Gastrointestinal , Militares , Humanos , População Branca , Povo Asiático , Metagenoma
3.
ISME Commun ; 3(1): 95, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684358

RESUMO

The interactions between bacteria and bacteriophage have important roles in the global ecosystem; in turn changes in environmental parameters affect the interactions between bacteria and phage. However, there is a lack of knowledge on whether clonal bacterial populations harbour different phenotypes that respond to phage in distinct ways and whether the abundance of such phenotypes within bacterial populations is affected by variations in environmental parameters. Here we study the impact of variations in nutrient availability, bacterial growth rate and phage abundance on the interactions between the phage T4 and individual Escherichia coli cells confined in spatial refuges. Surprisingly, we found that fast growing bacteria survive together with all of their clonal kin cells, whereas slow growing bacteria survive in isolation. We also discovered that the number of bacteria that survive in isolation decreases at increasing phage doses possibly due to lysis inhibition in the presence of secondary adsorptions. We further show that these changes in the phenotypic composition of the E. coli population have important consequences on the bacterial and phage population dynamics and should therefore be considered when investigating bacteria-phage interactions in ecological, health or food production settings in structured environments.

4.
Antibiotics (Basel) ; 12(7)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37508192

RESUMO

This study determined the in vitro activity of finafloxacin against panels of bacterial strains, representative of those associated with infection in cystic fibrosis patients and predominately isolated from clinical cases of respiratory disease. Many of these isolates were resistant to various antimicrobials evaluated including the aminoglycosides, cephalosporins, carbapenems and fluoroquinolones. Broth microdilution assays were performed at neutral and acidic pH, to determine antimicrobial activity. Finafloxacin demonstrated superior activity at reduced pH for all of the bacterial species investigated, highlighting the requirement to determine the activity of antimicrobials in host-relevant conditions.

5.
Antibiotics (Basel) ; 12(6)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37370302

RESUMO

Antimicrobial resistance is a global issue, and the investigation of alternative therapies that are not traditional antibiotics are warranted. Novel bacterial type II topoisomerase inhibitors (NBTIs) have recently emerged as a novel class of antibiotics with reduced potential for cross-resistance to fluoroquinolones due to their novel mechanism of action. This study investigated the in vitro activity of a series of cyclohexyl-oxazolidinone bacterial topoisomerase inhibitors against type strains of Francisella tularensis and Burkholderia pseudomallei. Broth microdilution, time-kill, and cell infection assays were performed to determine activity against these biothreat pathogens. Two candidates were identified that demonstrated in vitro activity in multiple assays that in some instances was equivalent to ciprofloxacin and doxycycline. These data warrant the further evaluation of these novel NBTIs and future iterations in vitro and in vivo.

6.
Antibiotics (Basel) ; 12(3)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36978372

RESUMO

Burkholderia pseudomallei, the causative agent of the disease melioidosis, has been isolated from the environment in 45 countries. The treatment of melioidosis is complex, requiring lengthy antibiotic regimens, which can result in the relapse of the disease following treatment cessation. It is important that novel therapies to treat infections with B. pseudomallei be assessed in appropriate animal models, and discussions regarding the different protocols used between laboratories are critical. A 'deep dive' was held in October 2020 focusing on the use of the BALB/c mouse model and the inhalational route of infection to evaluate new antibiotic therapies.

7.
Front Microbiol ; 13: 1057202, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36504783

RESUMO

Burkholderia mallei, the causative agent of glanders, is principally a disease of equines, although it can also infect humans and is categorized by the U.S. Centers for Disease Control and Prevention as a category B biological agent. Human cases of glanders are rare and thus there is limited information on treatment. It is therefore recommended that cases are treated with the same therapies as used for melioidosis, which for prophylaxis, is co-trimoxazole (trimethoprim/sulfamethoxazole) or co-amoxiclav (amoxicillin/clavulanic acid). In this study, the fluoroquinolone finafloxacin was compared to co-trimoxazole as a post-exposure prophylactic in a murine model of inhalational glanders. BALB/c mice were exposed to an aerosol of B. mallei followed by treatment with co-trimoxazole or finafloxacin initiated at 24 h post-challenge and continued for 14 days. Survival at the end of the study was 55% or 70% for mice treated with finafloxacin or co-trimoxazole, respectively, however, this difference was not significant. However, finafloxacin was more effective than co-trimoxazole in controlling bacterial load within tissues and demonstrating clearance in the liver, lung and spleen following 14 days of therapy. In summary, finafloxacin should be considered as a promising alternative treatment following exposure to B. mallei.

8.
Antibiotics (Basel) ; 11(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36290100

RESUMO

Burkholderia pseudomallei is the causative agent of melioidosis, a multifaceted disease. A proportion of the mortality and morbidity reported as a result of infection with this organism may be due to the premature cessation of antibiotic therapy typically lasting for several months. The progression of re-emergent disease was characterised in Balb/c mice following cessation of a 14 day treatment course of co-trimoxazole or finafloxacin, delivered at a human equivalent dose. Mice were culled weekly and the infection characterised in terms of bacterial load in tissues, weight loss, clinical signs of infection, cytokine levels and immunological cell counts. Following cessation of treatment, the infection re-established in some animals. Finafloxacin prevented the re-establishment of the infection for longer than co-trimoxazole, and it is apparent based on the protection offered, the development of clinical signs of disease, bodyweight loss and bacterial load, that finafloxacin was more effective at controlling infection when compared to co-trimoxazole.

9.
Front Microbiol ; 13: 934312, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051754

RESUMO

The efficacy of finafloxacin as a component of a layered defense treatment regimen was determined in vitro and in vivo against an infection with Burkholderia pseudomallei. Doxycycline was down-selected from a panel of antibiotics evaluated in vitro and used in combination with finafloxacin in a Balb/c mouse model of inhalational melioidosis. When treatment was initiated at 24 h post-infection with B. pseudomallei, there were no differences in the level of protection offered by finafloxacin or doxycycline (as monotherapies) when compared to the combination therapy. There was evidence for improved bacterial control in the groups treated with finafloxacin (as monotherapies or in combination with doxycycline) when compared to mice treated with doxycycline. Survival comparisons of finafloxacin and doxycycline (as monotherapies) or in combination initiated at 36 h post-infection indicated that finafloxacin was superior to doxycycline. Doxycycline was also unable to control the levels of bacteria within tissues to the extent that doxycycline and finafloxacin used in combination or finafloxacin (as a sole therapy) could. In summary, finafloxacin is a promising therapy for use in the event of exposure to B. pseudomallei.

10.
Microbiol Spectr ; 10(1): e0211021, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34985335

RESUMO

Bacteria have developed unique mechanisms to adapt to environmental stresses and challenges of the immune system. Here, we report that Burkholderia pseudomallei, the causative agent of melioidosis, and its laboratory surrogate, Burkholderia thailandensis, utilize distinct mechanisms for surviving starvation at different incubation temperatures. At 21°C, Burkholderia are present as short rods which can rapidly reactivate and form colonies on solid media. At 4°C, Burkholderia convert into coccoid forms that cannot be cultured on solid agar but can be resuscitated in liquid media supplemented with supernatant obtained from logarithmic phase cultures of B. thailandensis, or catalase and Tween 80, thus displaying characteristics of differentially culturable bacteria (DCB). These DCB have low intensity fluorescence when stained with SYTO 9, have an intact cell membrane (propidium iodide negative), and contain 16S rRNA at levels comparable with growing cells. We also present evidence that lytic transglycosylases, a family of peptidoglycan-remodeling enzymes, are involved in the generation of coccoid forms and their resuscitation to actively growing cells. A B. pseudomallei ΔltgGCFD mutant with four ltg genes deleted did not produce coccoid forms at 4°C and could not be resuscitated in the liquid media evaluated. Our findings provide insights into the adaptation of Burkholderia to nutrient limitation and the generation of differentially culturable bacteria. IMPORTANCE Bacterial pathogens exhibit physiologically distinct forms that enable their survival in an infected host, the environment and following exposure to antimicrobial agents. B. pseudomallei causes the disease melioidosis, which has a high mortality rate and is difficult to treat with antibiotics. The bacterium is endemic to several countries and detected in high abundance in the environment. Here, we report that during starvation at low temperature, B. pseudomallei produces coccoid forms that cannot grow in standard media and which, therefore, can be challenging to detect using common tools. We provide evidence that the formation of these cocci is mediated by cell wall-specialized enzymes and lytic transglycosylases, and that resuscitation of these forms occurs following the addition of catalase and Tween 80. Our findings have important implications for the disease control and detection of B. pseudomallei, an agent of both public health and defense interest.


Assuntos
Burkholderia/fisiologia , Temperatura , Burkholderia/citologia , Burkholderia/genética , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/fisiologia , Técnicas de Cultura de Células , Humanos , Melioidose/microbiologia , Peptidoglicano , RNA Ribossômico 16S/genética
11.
Front Microbiol ; 13: 1092230, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37252207

RESUMO

Burkholderia pseudomallei is the causative agent of the tropical disease, melioidosis. It is intrinsically resistant to many antimicrobials and treatment requires an onerous regimen of intravenous and orally administered drugs. Relapse of disease and high rates of mortality following treatment are common, demonstrating the need for new anti-Burkholderia agents. The cationic bola-amphiphile, 12,12'-(dodecane-1,12-diyl) bis (9-amino-1,2,3,4-tetrahydroacridinium), referred to as 12-bis-THA, is a molecule with the potential to treat Burkholderia infections. 12-bis-THA spontaneously forms cationic nanoparticles that bind anionic phospholipids in the prokaryotic membrane and are readily internalized. In this study, we examine the antimicrobial activity of 12-bis-THA against strains of Burkholderia thailandensis. As B. pseudomallei produces a polysaccharide capsule we first examined if this extra barrier influenced the activity of 12-bis-THA which is known to act on the bacterial envelope. Therefore two strains of B. thailandensis were selected for further testing, strain E264 which does not produce a capsule and strain E555 which does produce a capsule that is chemically similar to that found in B. pseudomallei. In this study no difference in the minimum inhibitory concentration (MIC) was observed when capsulated (E555) and unencapsulated (E264) strains of B. thailandensis were compared, however time-kill analysis showed that the unencapsulated strain was more susceptible to 12-bis-THA. The presence of the capsule did not affect the membrane permeation of 12-bis-THA at MIC concentrations. Proteomic and metabolomic analyses showed that 12-bis-THA causes a shift in central metabolism away from glycolysis and glyoxylate cycle, and suppressed the production of the F1 domain of ATP synthase. In summary, we provide insight into the molecular mechanisms underpinning the activity of 12-bis-THA against B. thailandensis and discuss its potential for further development.

12.
Front Microbiol ; 12: 760698, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34917048

RESUMO

Finafloxacin is a novel fluoroquinolone with optimal antibacterial activity in low pH environments, therefore offering a therapeutic advantage over some traditional antibiotics, in treating bacterial infections associated with acidic foci. Coxiella burnetii, the causative agent of Q fever, is a bacterium which resides and replicates in acidic intracellular parasitic vacuoles. The efficacy of finafloxacin was evaluated in vivo using the A/J mouse model of inhalational Q fever and was compared to doxycycline, the standard treatment for this infection and ciprofloxacin, a comparator fluoroquinolone. Finafloxacin reduced the severity of the clinical signs of infection and weight loss associated with Q fever, but did not reduce the level of bacterial colonization in tissues compared to doxycycline or ciprofloxacin. However, histopathological analysis suggested that treatment with finafloxacin reduced tissue damage associated with C. burnetii infection. In addition, we report for the first time, the use of viable counts on axenic media to evaluate antibiotic efficacy in vivo.

13.
PLoS Biol ; 19(10): e3001406, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34637438

RESUMO

Bacteriophages represent an avenue to overcome the current antibiotic resistance crisis, but evolution of genetic resistance to phages remains a concern. In vitro, bacteria evolve genetic resistance, preventing phage adsorption or degrading phage DNA. In natural environments, evolved resistance is lower possibly because the spatial heterogeneity within biofilms, microcolonies, or wall populations favours phenotypic survival to lytic phages. However, it is also possible that the persistence of genetically sensitive bacteria is due to less efficient phage amplification in natural environments, the existence of refuges where bacteria can hide, and a reduced spread of resistant genotypes. Here, we monitor the interactions between individual planktonic bacteria in isolation in ephemeral refuges and bacteriophage by tracking the survival of individual cells. We find that in these transient spatial refuges, phenotypic resistance due to reduced expression of the phage receptor is a key determinant of bacterial survival. This survival strategy is in contrast with the emergence of genetic resistance in the absence of ephemeral refuges in well-mixed environments. Predictions generated via a mathematical modelling framework to track bacterial response to phages reveal that the presence of spatial refuges leads to fundamentally different population dynamics that should be considered in order to predict and manipulate the evolutionary and ecological dynamics of bacteria-phage interactions in naturally structured environments.


Assuntos
Bacteriófagos/fisiologia , Meio Ambiente , Escherichia coli/virologia , Simulação por Computador , Fenótipo , Receptores Virais/metabolismo
14.
Antimicrob Agents Chemother ; 65(12): e0106121, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34543094

RESUMO

We evaluated antibiotic activity against the intracellular bacterium Coxiella burnetii using an activated THP-1 cell model of infection. At clinically relevant concentrations, the intracellular bacterial load was reduced 300-fold by levofloxacin and finafloxacin, 40-fold by doxycycline, and 4-fold by ciprofloxacin and was unaffected by azithromycin. Acidification of the culture medium reduced antibiotic activity, with the exceptions of doxycycline (no change) and finafloxacin (slight improvement). This model may be used to select antibiotics to be evaluated in vivo.


Assuntos
Coxiella burnetii , Febre Q , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Ciprofloxacina , Doxiciclina/farmacologia , Humanos , Febre Q/tratamento farmacológico , Células THP-1
15.
PLoS One ; 16(3): e0248119, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33764972

RESUMO

Burkholderia pseudomallei is a soil-dwelling organism present throughout the tropics. It is the causative agent of melioidosis, a disease that is believed to kill 89,000 people per year. It is naturally resistant to many antibiotics, requiring at least two weeks of intravenous treatment with ceftazidime, imipenem or meropenem followed by 6 months of orally delivered co-trimoxazole. This places a large treatment burden on the predominantly middle-income nations where the majority of disease occurs. We have established a high-throughput assay for compounds that could be used as a co-therapy to potentiate the effect of ceftazidime, using the related non-pathogenic bacterium Burkholderia thailandensis as a surrogate. Optimization of the assay gave a Z' factor of 0.68. We screened a library of 61,250 compounds and identified 29 compounds with a pIC50 (-log10(IC50)) greater than five. Detailed investigation allowed us to down select to six "best in class" compounds, which included the licensed drug chloroxine. Co-treatment of B. thailandensis with ceftazidime and chloroxine reduced culturable cell numbers by two orders of magnitude over 48 hours, compared to treatment with ceftazidime alone. Hit expansion around chloroxine was performed using commercially available compounds. Minor modifications to the structure abolished activity, suggesting that chloroxine likely acts against a specific target. Finally, an initial study demonstrates the utility of chloroxine to act as a co-therapy to potentiate the effect of ceftazidime against B. pseudomallei. This approach successfully identified potential co-therapies for a recalcitrant Gram-negative bacterial species. Our assay could be used more widely to aid in chemotherapy to treat infections caused by these bacteria.


Assuntos
Antibacterianos/farmacologia , Infecções por Burkholderia/tratamento farmacológico , Burkholderia/efeitos dos fármacos , Ceftazidima/farmacologia , Cloroquinolinóis/farmacologia , Burkholderia pseudomallei/efeitos dos fármacos , Descoberta de Drogas , Sinergismo Farmacológico , Humanos , Melioidose/tratamento farmacológico , Testes de Sensibilidade Microbiana
16.
Artigo em Inglês | MEDLINE | ID: mdl-33753342

RESUMO

Infection with aerosolized Francisella tularensis or Yersinia pestis can lead to lethal disease in humans if treatment is not initiated promptly. Finafloxacin is a novel fluoroquinolone which has demonstrated broad-spectrum activity against a range of bacterial species in vitro, in vivo, and in humans, activity which is superior in acidic, infection-relevant conditions. Human-equivalent doses of finafloxacin or ciprofloxacin were delivered at 24 h (representing prophylaxis) or at 72 or 38 h (representing treatment) postchallenge with F. tularensis or Y. pestis, respectively, in BALB/c mouse models. In addition, a short course of therapy (3 days) was compared to a longer course (7 days). Both therapies provided a high level of protection against both infections when administered at 24 h postchallenge, irrespective of the length of the dosing regimen; however, differences were observed when therapy was delayed. A benefit was demonstrated with finafloxacin compared to ciprofloxacin in both models when therapy was delivered later in the infection. These studies suggest that finafloxacin is an effective alternative therapeutic for the prophylaxis and treatment of inhalational infections with F. tularensis or Y. pestis.


Assuntos
Francisella tularensis , Peste , Tularemia , Animais , Fluoroquinolonas/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Peste/tratamento farmacológico , Peste/prevenção & controle , Tularemia/tratamento farmacológico
17.
Antimicrob Agents Chemother ; 63(12)2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31570393

RESUMO

This study investigated the in vitro activity of finafloxacin against panels of the biodefence pathogens. Broth microdilution assays were performed at neutral and acidic pH, to determine the effectiveness of the antibiotics in conditions typical of an intracellular environment. In all instances, finafloxacin demonstrated superior activity at low pH. These results highlight the importance of evaluating antimicrobial efficacy in conditions relevant to those encountered in vivo.

18.
Sci Rep ; 9(1): 11060, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31363151

RESUMO

Burkholderia pseudomallei is the causative agent of the tropical disease melioidosis. Its genome encodes an arsenal of virulence factors that allow it, when required, to switch from a soil dwelling bacterium to a deadly intracellular pathogen. With a high intrinsic resistance to antibiotics and the ability to overcome challenges from the host immune system, there is an increasing requirement for new antibiotics and a greater understanding into the molecular mechanisms of B. pseudomallei virulence and dormancy. The peptidoglycan remodeling enzymes, lytic transglycosylases (Ltgs) are potential targets for such new antibiotics. Ltgs cleave the glycosidic bonds within bacterial peptidoglycan allowing for the insertion of peptidoglycan precursors during cell growth and division, and cell membrane spanning structures such as flagella and secretion systems. Using bioinformatic analysis we have identified 8 putative Ltgs in B. pseudomallei K96243. We aimed to investigate one of these Ltgs, LtgG (BPSL3046) through the generation of deletion mutants and biochemical analysis. We have shown that LtgG is a key contributor to cellular morphology, division, motility and virulence in BALB/c mice. We have determined the crystal structure of LtgG and have identified various amino acids likely to be important in peptidoglycan binding and catalytic activity. Recombinant protein assays and complementation studies using LtgG containing a site directed mutation in aspartate 343, confirmed the essentiality of this amino acid in the function of LtgG.


Assuntos
Proteínas de Bactérias/metabolismo , Burkholderia pseudomallei/metabolismo , Melioidose/microbiologia , Peptidoglicano Glicosiltransferase/metabolismo , Animais , Proteínas de Bactérias/genética , Burkholderia pseudomallei/citologia , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/patogenicidade , Membrana Celular/metabolismo , Forma Celular , Biologia Computacional , Camundongos , Camundongos Endogâmicos BALB C , Peptidoglicano Glicosiltransferase/genética , Virulência/genética
19.
Front Microbiol ; 10: 904, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31118924

RESUMO

The efficacy of the novel fluoroquinolone finafloxacin was evaluated as a potential therapeutic in vitro and in vivo, following an intranasal infection of Francisella tularensis strain SchuS4 in BALB/c mice. We demonstrated that short treatment courses of finafloxacin provide high levels of protection, with a single dose resulting in a significant increase in time to death when compared to ciprofloxacin. In addition, following investigation into the window of opportunity for treatment, we have shown that finafloxacin can provided protection when administered up to 96 h post-challenge. This is particularly encouraging since mice displayed severe signs of disease at this time point. In summary, finafloxacin may be a promising therapy for use in the event of exposure to F. tularensis, perhaps enabling the treatment regimen to be shortened or if therapy is delayed. The efficacy of finafloxacin against other biological threat agents also warrants investigation.

20.
Int J Antimicrob Agents ; 54(1): 85-88, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31029736

RESUMO

Disulfiram (DSF) can help treat alcohol dependency by inhibiting aldehyde dehydrogenase (ALDH). Genomic analysis revealed that Francisella tularensis, the causative agent of tularemia, has lost all but one ALDH-like domain and that this domain retains the target of DSF. In this study, minimum inhibitory concentration (MIC) assays demonstrated that both DSF and its primary metabolite diethyldithiocarbamate (DDC) have strong antimicrobial activity against F. tularensis strain SCHU S4, with the MIC of DSF determined as 2 µg/mL in comparison with 8 µg/mL for DDC. The activity of DSF was further confirmed using an in vitro human macrophage infection assay. Francisella tularensis bacteria in DSF-treated cells were reduced in comparison with untreated and DDC-treated cells, comparable with that observed in doxycycline-treated cells. This suggests that DSF may be suitable for further investigation as an in vivo therapy for tularemia.


Assuntos
Inibidores de Acetaldeído Desidrogenases/farmacologia , Dissuasores de Álcool/farmacologia , Antibacterianos/farmacologia , Dissulfiram/farmacologia , Francisella tularensis/efeitos dos fármacos , Francisella tularensis/crescimento & desenvolvimento , Carga Bacteriana , Humanos , Testes de Sensibilidade Microbiana , Monócitos/efeitos dos fármacos , Monócitos/microbiologia , Células THP-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...