Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 21(4): e3002075, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37040348

RESUMO

Astrocytes crucially contribute to synaptic physiology and information processing. One of their key characteristics is to express high levels of connexins (Cxs), the gap junction-forming protein. Among them, Cx30 displays specific properties since it is postnatally expressed and dynamically upregulated by neuronal activity and modulates cognitive processes by shaping synaptic and network activities, as recently shown in knockout mice. However, it remains unknown whether local and selective upregulation of Cx30 in postnatal astrocytes within a physiological range modulates neuronal activities in the hippocampus. We here show in mice that, whereas Cx30 upregulation increases the connectivity of astroglial networks, it decreases spontaneous and evoked synaptic transmission. This effect results from a reduced neuronal excitability and translates into an alteration in the induction of synaptic plasticity and an in vivo impairment in learning processes. Altogether, these results suggest that astroglial networks have a physiologically optimized size to appropriately regulate neuronal functions.


Assuntos
Astrócitos , Conexina 43 , Camundongos , Animais , Conexina 30/metabolismo , Astrócitos/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Regulação para Cima , Conexinas/genética , Conexinas/metabolismo , Camundongos Knockout , Hipocampo/metabolismo
2.
Glia ; 69(9): 2178-2198, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33973274

RESUMO

Astrocytes play important roles in brain function via dynamic structural and functional interactions with neurons. Yet the underlying mechanisms remain poorly defined. A typical feature of astrocytes is the high expression of connexins, which mediate their extensive intercellular communication and regulate their structural properties. In particular, connexin 30 (Cx30), one of the two connexins abundantly expressed by astrocytes, was recently shown to be a critical regulator of excitatory synaptic transmission by controlling the astroglial coverage of synapses. However, the role of Cx30 in the regulation of inhibitory synaptic transmission and excitatory/inhibitory balance remains elusive. Here, we investigated the role of astroglial Cx30 on the electrophysiological and morphological properties of five classes of hippocampal CA1 stratum oriens and pyramidale neurons, defined by the unsupervised Ward's clustering. Using Cx30 knockout mice, we found that Cx30 alters specific properties of some subsets of CA1 interneurons, such as resting membrane potential and sag ratio, while other parameters, such as action potential threshold and saturation frequency, were more frequently altered among the different classes of neurons. The excitation-inhibition balance was also differentially and selectively modulated among the different neuron subtypes. Only slight morphological differences were observed on reconstructed neurons. Altogether, these data indicate that Cx30 differentially alters the electrophysiological and morphological properties of hippocampal cell populations, and modulates both their excitatory and inhibitory inputs. Astrocytes, via Cx30, are thus active modulators of both excitatory and inhibitory synapses in the hippocampus.


Assuntos
Astrócitos , Hipocampo , Animais , Astrócitos/metabolismo , Conexina 30/genética , Conexina 30/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Interneurônios/metabolismo , Camundongos , Sinapses/metabolismo , Transmissão Sináptica/fisiologia
3.
Int J Pharm ; 593: 120107, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33259904

RESUMO

Conjugation to high molecular weight (MW ≥ 20 kDa) polyethylene glycol (PEG) was previously shown to largely prolong the lung residence time of recombinant human deoxyribonuclease I (rhDNase) and improve its therapeutic efficacy following pulmonary delivery in mice. In this paper, we investigated the mechanisms promoting the extended lung retention of PEG-rhDNase conjugates using cell culture models and lung biological media. Uptake by alveolar macrophages was also assessed in vivo. Transport experiments showed that PEGylation reduced the uptake and transport of rhDNase across monolayers of Calu-3 cells cultured at an air-liquid interface. PEGylation also decreased the uptake of rhDNase by macrophages in vitro whatever the PEG size as well as in vivo 4 h following intratracheal instillation in mice. However, the reverse was observed in vivo at 24 h due to the higher availability of PEGylated rhDNase in lung airways at 24 h compared with rhDNase, which is cleared faster. The uptake of rhDNase by macrophages was dependent on energy, time, and concentration and occurred at rates indicative of adsorptive endocytosis. The diffusion of PEGylated rhDNase in porcine tracheal mucus and cystic fibrosis sputa was slower compared with that of rhDNase. Nevertheless, no significant binding of PEGylated rhDNase to both media was observed. In conclusion, decreased transport across lung epithelial cells and uptake by macrophages appear to contribute to the longer retention of PEGylated rhDNase in the lungs.


Assuntos
Desoxirribonuclease I , Pulmão , Animais , Células Epiteliais , Macrófagos , Camundongos , Polietilenoglicóis , Proteínas Recombinantes , Suínos
4.
Sleep ; 43(1)2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31403694

RESUMO

STUDY OBJECTIVES: The regulation of sleep-wake cycles is crucial for the brain's health and cognitive skills. Among the various substances known to control behavioral states, intraventricular injection of neuropeptide S (NPS) has already been shown to promote wakefulness. However, the NPS signaling pathway remains elusive. In this study, we characterized the effects of NPS in the ventrolateral preoptic nucleus (VLPO) of the hypothalamus, one of the major brain structures regulating non-rapid eye movement (NREM) sleep. METHODS: We combined polysomnographic recordings, vascular reactivity, and patch-clamp recordings in mice VLPO to determine the NPS mode of action. RESULTS: We demonstrated that a local infusion of NPS bilaterally into the anterior hypothalamus (which includes the VLPO) significantly increases awakening and specifically decreases NREM sleep. Furthermore, we established that NPS application on acute brain slices induces strong and reversible tetrodotoxin (TTX)-sensitive constriction of blood vessels in the VLPO. This effect strongly suggests that the local neuronal network is downregulated in the presence of NPS. At the cellular level, we revealed by electrophysiological recordings and in situ hybridization that NPSR mRNAs are only expressed by non-Gal local GABAergic neurons, which are depolarized by the application of NPS. Simultaneously, we showed that NPS hyperpolarizes sleep-promoting neurons, which is associated with an increased frequency in their spontaneous IPSC inputs. CONCLUSION: Altogether, our data reveal that NPS controls local neuronal activity in the VLPO. Following the depolarization of local GABAergic neurons, NPS indirectly provokes feed-forward inhibition onto sleep-promoting neurons, which translates into a decrease in NREM sleep to favor arousal.


Assuntos
Nível de Alerta/fisiologia , Neuropeptídeos/metabolismo , Área Pré-Óptica/metabolismo , Fases do Sono/fisiologia , Vigília/fisiologia , Animais , Neurônios GABAérgicos/metabolismo , Inibição Psicológica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Acoplamento Neurovascular/fisiologia , Técnicas de Patch-Clamp , Polissonografia , Transdução de Sinais/fisiologia
5.
Brain Struct Funct ; 224(9): 3045-3057, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31493023

RESUMO

The median preoptic nucleus (MnPO) and the ventrolateral preoptic nucleus (VLPO) are two brain structures that contain neurons essential for promoting non-rapid eye movement (NREM) sleep. However, their connections are still largely unknown. Here, we describe for the first time a slice preparation with an oblique coronal slicing angle at 70° from the horizontal in which their connectivity is preserved. Using the in vivo iDISCO method following viral infection of the MnPO or ex vivo biocytin crystal deposition in the MnPO of mouse brain slices, we revealed a strong axonal pathway from the MnPO to the VLPO. Then, to further explore the functionality of these projections, acute 70° slices were placed on multielectrode arrays (MEAs) and electrical stimulations were performed near the MnPO. Recordings of the signals propagation throughout the slices revealed a preferential pathway from the MnPO to the VLPO. Finally, we performed an input-output curve of field responses evoked by stimulation of the MnPO and recorded in the VLPO. We found that field responses were inhibited by GABAA receptor antagonist, suggesting that afferent inputs from the MnPO activate VLPO neuronal networks by disinhibition.


Assuntos
Neurônios/citologia , Neurônios/fisiologia , Área Pré-Óptica/citologia , Área Pré-Óptica/fisiologia , Animais , Axônios , Masculino , Camundongos Endogâmicos C57BL , Vias Neurais/citologia , Vias Neurais/fisiologia , Técnicas de Rastreamento Neuroanatômico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...