Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Eur J Endocrinol ; 189(5): 517-526, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37962923

RESUMO

OBJECTIVE: Benign adrenocortical tumours are diagnosed in ∼5% of adults and are associated with cortisol excess in 30%-50% of cases. Adrenal Cushing's syndrome (CS) is rare and leads to multiple haematological alterations. However, little is known about the effects of the much more frequent mild autonomous cortisol secretion (MACS) on immune function. The aim of this study was to evaluate the haematological alterations in benign adrenocortical tumours with different degrees of cortisol excess. DESIGN AND METHODS: We investigated 375 patients: 215 with non-functioning adrenal tumours (NFAT), 138 with MACS, and 22 with CS. We evaluated the relationship between the degree of cortisol excess and full blood count as well as multiple inflammation-based scores, including the neutrophil-to-lymphocyte ratio (NLR), the lymphocyte-to-monocyte ratio (LMR), and the systemic immune-inflammation index (SII). RESULTS: We observed a gradual and significant increase of leucocytes, neutrophils, and monocytes across the spectrum of cortisol excess, from NFAT over MACS to CS. Neutrophil-to-lymphocyte ratio and SII were significantly higher in both MACS and CS when compared to NFAT (P < .001 and P = .002 for NLR and P = .006 and P = .021 for SII, respectively). Conversely, LMR was lower in MACS and CS than in NFAT (P = .01 and <.001, respectively) but also significantly lower in CS compared to MACS (P = .007). CONCLUSIONS: Neutrophil-to-lymphocyte ratio, SII, and LMR correlated with the degree of cortisol excess in benign adrenocortical tumours and were altered in patients with CS and MACS. These findings suggest that, similar to clinically overt CS, MACS also affects the immune function, potentially contributing to the MACS-associated comorbidities.


Assuntos
Neoplasias do Córtex Suprarrenal , Neoplasias das Glândulas Suprarrenais , Síndrome de Cushing , Adulto , Humanos , Hidrocortisona , Síndrome de Cushing/diagnóstico , Estudos Retrospectivos , Neoplasias das Glândulas Suprarrenais/patologia , Inflamação
2.
Front Immunol ; 14: 1190261, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37942320

RESUMO

Glucocorticoids potently inhibit expression of many inflammatory mediators, and have been widely used to treat both acute and chronic inflammatory diseases for more than seventy years. However, they can have several unwanted effects, amongst which immunosuppression is one of the most common. Here we used microarrays and proteomic approaches to characterise the effect of dexamethasone (a synthetic glucocorticoid) on the responses of primary mouse macrophages to a potent pro-inflammatory agonist, lipopolysaccharide (LPS). Gene ontology analysis revealed that dexamethasone strongly impaired the lipopolysaccharide-induced antimicrobial response, which is thought to be driven by an autocrine feedback loop involving the type I interferon IFNß. Indeed, dexamethasone strongly and dose-dependently inhibited the expression of IFNß by LPS-activated macrophages. Unbiased proteomic data also revealed an inhibitory effect of dexamethasone on the IFNß-dependent program of gene expression, with strong down-regulation of several interferon-induced antimicrobial factors. Surprisingly, dexamethasone also inhibited the expression of several antimicrobial genes in response to direct stimulation of macrophages with IFNß. We tested a number of hypotheses based on previous publications, but found that no single mechanism could account for more than a small fraction of the broad suppressive impact of dexamethasone on macrophage type I interferon signaling, underlining the complexity of this pathway. Preliminary experiments indicated that dexamethasone exerted similar inhibitory effects on primary human monocyte-derived or alveolar macrophages.


Assuntos
Anti-Infecciosos , Lipopolissacarídeos , Camundongos , Animais , Humanos , Lipopolissacarídeos/farmacologia , Interferon beta/farmacologia , Proteômica , Macrófagos , Glucocorticoides/farmacologia , Dexametasona/farmacologia , Anti-Infecciosos/farmacologia
3.
Front Immunol ; 14: 1252874, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37936704

RESUMO

Background: Extra-adrenal glucocorticoid (GC) synthesis at epithelial barriers, such as skin and intestine, has been shown to be important in the local regulation of inflammation. However, the role of local GC synthesis in the lung is less well studied. Based on previous studies and the uncontentious efficacy of corticosteroid therapy in asthma patients, we here investigated the role of 11ß-hydroxysteroid dehydrogenase 1 (11ß-HSD1/Hsd11b1)-dependent local GC reactivation in the regulation of allergic airway inflammation. Methods: Airway inflammation in Hsd11b1-deficient and C57BL/6 wild type mice was analyzed after injection of lipopolysaccharide (LPS) and anti-CD3 antibody, and in acute and chronic models of airway hypersensitivity induced by house dust mite (HDM) extract. The role of 11ß-HSD1 in normal and inflammatory conditions was assessed by high dimensional flow cytometry, histological staining, RT-qPCR analysis, ex vivo tissue cultures, GC-bioassays and protein detection by ELISA and immunoblotting. Results: Here we show that lung tissue from Hsd11b1-deficient mice synthesized significantly less GC ex vivo compared with wild type animals in response to immune cell stimulation. We further observed a drastically aggravated phenotype in Hsd11b1-deficient mice treated with HDM extract compared to wild type animals. Besides eosinophilic infiltration, Hsd11b1-deficient mice exhibited aggravated neutrophilic infiltration caused by a strong Th17-type immune response. Conclusion: We propose an important role of 11ß-HSD1 and local GC in regulating Th17-type rather than Th2-type immune responses in HDM-induced airway hypersensitivity in mice by potentially controlling Toll-like receptor 4 (TLR4) signaling and cytokine/chemokine secretion by airway epithelial cells.


Assuntos
Alergia a Ácaros , Glucocorticoides , Humanos , Animais , Camundongos , Glucocorticoides/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Camundongos Endogâmicos C57BL , Inflamação , Alérgenos , Pyroglyphidae
4.
Front Immunol ; 14: 1159831, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180160

RESUMO

Background: Acute Respiratory Distress Syndrome (ARDS) is a devastating pulmonary inflammatory disorder, commonly precipitated by sepsis. Glucocorticoids are immunomodulatory steroids that can suppress inflammation. Their anti-inflammatory properties within tissues are influenced by their pre-receptor metabolism and amplification from inactive precursors by 11ß-hydroxysteroid dehydrogenase type-1 (HSD-1). We hypothesised that in sepsis-related ARDS, alveolar macrophage (AM) HSD-1 activity and glucocorticoid activation are impaired, and associated with greater inflammatory injury and worse outcomes. Methods: We analysed broncho-alveolar lavage (BAL) and circulating glucocorticoid levels, AM HSD-1 reductase activity and Receptor for Advanced Glycation End-products (RAGE) levels in two cohorts of critically ill sepsis patients, with and without ARDS. AM HSD-1 reductase activity was also measured in lobectomy patients. We assessed inflammatory injury parameters in models of lung injury and sepsis in HSD-1 knockout (KO) and wild type (WT) mice. Results: No difference in serum and BAL cortisol: cortisone ratios are shown between sepsis patients with and without ARDS. Across all sepsis patients, there is no association between BAL cortisol: cortisone ratio and 30-day mortality. However, AM HSD-1 reductase activity is impaired in patients with sepsis-related ARDS, compared to sepsis patients without ARDS and lobectomy patients (0.075 v 0.882 v 0.967 pM/hr/106 AMs, p=0.004). Across all sepsis patients (with and without ARDS), impaired AM HSD-1 reductase activity is associated with defective efferocytosis (r=0.804, p=0.008) and increased 30-day mortality. AM HSD-1 reductase activity negatively correlates with BAL RAGE in sepsis patients with ARDS (r=-0.427, p=0.017). Following intra-tracheal lipopolysaccharide (IT-LPS) injury, HSD-1 KO mice demonstrate increased alveolar neutrophil infiltration, apoptotic neutrophil accumulation, alveolar protein permeability and BAL RAGE concentrations compared to WT mice. Caecal Ligation and Puncture (CLP) injury in HSD-1 KO mice results in greater peritoneal apoptotic neutrophil accumulation compared to WT mice. Conclusions: AM HSD-1 reductase activity does not shape total BAL and serum cortisol: cortisone ratios, however impaired HSD-1 autocrine signalling renders AMs insensitive to the anti-inflammatory effects of local glucocorticoids. This contributes to the decreased efferocytosis, increased BAL RAGE concentrations and mortality seen in sepsis-related ARDS. Upregulation of alveolar HSD-1 activity could restore AM function and improve clinical outcomes in these patients.


Assuntos
Cortisona , Pneumonia , Síndrome do Desconforto Respiratório , Sepse , Animais , Camundongos , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Glucocorticoides , Hidrocortisona , Macrófagos Alveolares/metabolismo , Receptor para Produtos Finais de Glicação Avançada , Hidroxiesteroide Desidrogenases/metabolismo , Anti-Inflamatórios , Sepse/complicações
5.
Eur J Endocrinol ; 188(1)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36747334

RESUMO

OBJECTIVE: Drugs targeting the glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) are emerging as treatments for type-2 diabetes and obesity. GIP acutely decreases serum markers of bone resorption and transiently increases bone formation markers in short-term clinical investigations. However, it is unknown whether GIP acts directly on bone cells to mediate these effects. Using a GIPR-specific antagonist, we aimed to assess whether GIP acts directly on primary human osteoclasts and osteoblasts. METHODS: Osteoclasts were differentiated from human CD14+ monocytes and osteoblasts from human bone. GIPR expression was determined using RNA-seq in primary human osteoclasts and in situ hybridization in human femoral bone. Osteoclastic resorptive activity was assessed using microscopy. GIPR signaling pathways in osteoclasts and osteoblasts were assessed using LANCE cAMP and AlphaLISA phosphorylation assays, intracellular calcium imaging and confocal microscopy. The bioenergetic profile of osteoclasts was evaluated using Seahorse XF-96. RESULTS: GIPR is robustly expressed in mature human osteoclasts. GIP inhibits osteoclastogenesis, delays bone resorption, and increases osteoclast apoptosis by acting upon multiple signaling pathways (Src, cAMP, Akt, p38, Akt, NFκB) to impair nuclear translocation of nuclear factor of activated T cells-1 (NFATc1) and nuclear factor-κB (NFκB). Osteoblasts also expressed GIPR, and GIP improved osteoblast survival. Decreased bone resorption and improved osteoblast survival were also observed after GIP treatment of osteoclast-osteoblast co-cultures. Antagonizing GIPR with GIP(3-30)NH2 abolished the effects of GIP on osteoclasts and osteoblasts. CONCLUSIONS: GIP inhibits bone resorption and improves survival of human osteoblasts, indicating that drugs targeting GIPR may impair bone resorption, whilst preserving bone formation.


Assuntos
Reabsorção Óssea , Osteoclastos , Humanos , Osteoclastos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Osso e Ossos/metabolismo , Osteoblastos/metabolismo , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/metabolismo , Diferenciação Celular
6.
Am J Physiol Lung Cell Mol Physiol ; 324(4): L400-L412, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36807882

RESUMO

Muscle atrophy is an extrapulmonary complication of acute exacerbations (AE) in chronic obstructive pulmonary disease (COPD). The endogenous production and therapeutic application of glucocorticoids (GCs) have been implicated as drivers of muscle loss in AE-COPD. The enzyme 11 ß-hydroxysteroid dehydrogenase 1 (11ß-HSD1) activates GCs and contributes toward GC-induced muscle wasting. To explore the potential of 11ßHSD1 inhibition to prevent muscle wasting here, the objective of this study was to ascertain the contribution of endogenous GC activation and amplification by 11ßHSD1 in skeletal muscle wasting during AE-COPD. Emphysema was induced by intratracheal (IT) instillation of elastase to model COPD in WT and 11ßHSD1/KO mice, followed by vehicle or IT-LPS administration to mimic AE. µCT scans were obtained prior and at study endpoint 48 h following IT-LPS, to assess emphysema development and muscle mass changes, respectively. Plasma cytokine and GC profiles were determined by ELISA. In vitro, myonuclear accretion and cellular response to plasma and GCs were determined in C2C12 and human primary myotubes. Muscle wasting was exacerbated in LPS-11ßHSD1/KO animals compared with WT controls. RT-qPCR and western blot analysis showed elevated catabolic and suppressed anabolic pathways in muscle of LPS-11ßHSD1/KO animals relative to WTs. Plasma corticosterone levels were higher in LPS-11ßHSD1/KO animals, whereas C2C12 myotubes treated with LPS-11ßHSD1/KO plasma or exogenous GCs displayed reduced myonuclear accretion relative to WT counterparts. This study reveals that 11ß-HSD1 inhibition aggravates muscle wasting in a model of AE-COPD, suggesting that therapeutic inhibition of 11ß-HSD1 may not be appropriate to prevent muscle wasting in this setting.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1 , Enfisema , Doença Pulmonar Obstrutiva Crônica , Animais , Humanos , Camundongos , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Glucocorticoides/farmacologia , Lipopolissacarídeos , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Atrofia Muscular/prevenção & controle , Doença Pulmonar Obstrutiva Crônica/complicações
7.
Pharmaceutics ; 15(1)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36678864

RESUMO

Age-related disorders of the musculoskeletal system including sarcopenia, osteoporosis and arthritis represent some of the most common chronic conditions worldwide, for which there remains a great clinical need to develop safer and more efficacious pharmacological treatments. Collectively, these conditions involve multiple tissues, including skeletal muscle, bone, articular cartilage and the synovium within the joint lining. In this review, we discuss the potential for oligonucleotide therapies to combat the unmet clinical need in musculoskeletal disorders by evaluating the successes of oligonucleotides to modify candidate pathological gene targets and cellular processes in relevant tissues and cells of the musculoskeletal system. Further, we discuss the challenges that remain for the clinical development of oligonucleotides therapies for musculoskeletal disorders and evaluate some of the current approaches to overcome these.

8.
Discov Immunol ; 2(1): kyac010, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38567064

RESUMO

Inflammatory arthritides such as rheumatoid arthritis are a major cause of disability. Pre-clinical murine models of inflammatory arthritis continue to be invaluable tools with which to identify and validate therapeutic targets and compounds. The models used are well-characterised and, whilst none truly recapitulates the human disease, they are crucial to researchers seeking to identify novel therapeutic targets and to test efficacy during preclinical trials of novel drug candidates. The arthritis parameters recorded during clinical trials and routine clinical patient care have been carefully standardised, allowing comparison between centres, trials, and treatments. Similar standardisation of scoring across in vivo models has not occurred, which makes interpretation of published results, and comparison between arthritis models, challenging. Here, we include a detailed and readily implementable arthritis scoring system, that increases the breadth of arthritis characteristics captured during experimental arthritis and supports responsive and adaptive monitoring of disease progression in murine models of inflammatory arthritis. In addition, we reference the wider ethical and experimental factors researchers should consider during the experimental design phase, with emphasis on the continued importance of replacement, reduction, and refinement of animal usage in arthritis research.

9.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806338

RESUMO

Therapeutic glucocorticoids (GCs) are powerful anti-inflammatory tools in the management of chronic inflammatory diseases such as rheumatoid arthritis (RA). However, their actions on bone in this context are complex. The enzyme 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) is a mediator of the anti-inflammatory actions of therapeutic glucocorticoids (GCs) in vivo. In this study we delineate the role of 11ß-HSD1 in the effects of GC on bone during inflammatory polyarthritis. Its function was assessed in bone biopsies from patients with RA and osteoarthritis, and in primary osteoblasts and osteoclasts. Bone metabolism was assessed in the TNF-tg model of polyarthritis treated with oral GC (corticosterone), in animals with global (TNF-tg11ßKO), mesenchymal (including osteoblast) (TNF-tg11ßflx/tw2cre) and myeloid (including osteoclast) (TNF-tg11ßflx/LysMcre) deletion. Bone parameters were assessed by micro-CT, static histomorphometry and serum metabolism markers. We observed a marked increase in 11ß-HSD1 activity in bone in RA relative to osteoarthritis bone, whilst the pro-inflammatory cytokine TNFα upregulated 11ß-HSD1 within osteoblasts and osteoclasts. In osteoclasts, 11ß-HSD1 mediated the suppression of bone resorption by GCs. Whilst corticosterone prevented the inflammatory loss of trabecular bone in TNF-tg animals, counterparts with global deletion of 11ß-HSD1 were resistant to these protective actions, characterised by increased osteoclastic bone resorption. Targeted deletion of 11ß-HSD1 within osteoclasts and myeloid derived cells partially reproduced the GC resistant phenotype. These data reveal the critical role of 11ß-HSD1 within bone and osteoclasts in mediating the suppression of inflammatory bone loss in response to therapeutic GCs in chronic inflammatory disease.


Assuntos
Artrite Reumatoide , Reabsorção Óssea , Osteoartrite , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Animais , Artrite Reumatoide/metabolismo , Reabsorção Óssea/metabolismo , Corticosterona/metabolismo , Glucocorticoides/metabolismo , Glucocorticoides/farmacologia , Inflamação/patologia , Osteoartrite/metabolismo , Osteoclastos/metabolismo
10.
Front Endocrinol (Lausanne) ; 13: 1075809, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36733794

RESUMO

Chronic kidney disease (CKD) describes the long-term condition of impaired kidney function from any cause. CKD is common and associated with a wide array of complications including higher mortality, cardiovascular disease, hypertension, insulin resistance, dyslipidemia, sarcopenia, osteoporosis, aberrant immune function, cognitive impairment, mood disturbances and poor sleep quality. Glucocorticoids are endogenous pleiotropic steroid hormones and their excess produces a pattern of morbidity that possesses considerable overlap with CKD. Circulating levels of cortisol, the major active glucocorticoid in humans, are determined by a complex interplay between several processes. The hypothalamic-pituitary-adrenal axis (HPA) regulates cortisol synthesis and release, 11ß-hydroxysteroid dehydrogenase enzymes mediate metabolic interconversion between active and inactive forms, and clearance from the circulation depends on irreversible metabolic inactivation in the liver followed by urinary excretion. Chronic stress, inflammatory states and other aspects of CKD can disturb these processes, enhancing cortisol secretion via the HPA axis and inducing tissue-resident amplification of glucocorticoid signals. Progressive renal impairment can further impact on cortisol metabolism and urinary clearance of cortisol metabolites. Consequently, significant interest exists to precisely understand the dysregulation of cortisol in CKD and its significance for adverse clinical outcomes. In this review, we summarize the latest literature on alterations in endogenous glucocorticoid regulation in adults with CKD and evaluate the available evidence on cortisol as a mechanistic driver of excess mortality and morbidity. The emerging picture is one of subclinical hypercortisolism with blunted diurnal decline of cortisol levels, impaired negative feedback regulation and reduced cortisol clearance. An association between cortisol and adjusted all-cause mortality has been reported in observational studies for patients with end-stage renal failure, but further research is required to assess links between cortisol and clinical outcomes in CKD. We propose recommendations for future research, including therapeutic strategies that aim to reduce complications of CKD by correcting or reversing dysregulation of cortisol.


Assuntos
Hidrocortisona , Insuficiência Renal Crônica , Adulto , Humanos , Hidrocortisona/metabolismo , Glucocorticoides/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo
11.
Front Med (Lausanne) ; 8: 737859, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660643

RESUMO

Background: Impaired alveolar macrophage (AM) efferocytosis may contribute to acute respiratory distress syndrome (ARDS) pathogenesis; however, studies are limited by the difficulty in obtaining primary AMs from patients with ARDS. Our objective was to determine whether an in vitro model of ARDS can recapitulate the same AM functional defect observed in vivo and be used to further investigate pathophysiological mechanisms. Methods: AMs were isolated from the lung tissue of patients undergoing lobectomy and then treated with pooled bronchoalveolar lavage (BAL) fluid previously collected from patients with ARDS. AM phenotype and effector functions (efferocytosis and phagocytosis) were assessed by flow cytometry. Rac1 gene expression was assessed using quantitative real-time PCR. Results: ARDS BAL treatment of AMs decreased efferocytosis (p = 0.0006) and Rac1 gene expression (p = 0.016); however, bacterial phagocytosis was preserved. Expression of AM efferocytosis receptors MerTK (p = 0.015) and CD206 (p = 0.006) increased, whereas expression of the antiefferocytosis receptor SIRPα decreased following ARDS BAL treatment (p = 0.036). Rho-associated kinase (ROCK) inhibition partially restored AM efferocytosis in an in vitro model of ARDS (p = 0.009). Conclusions: Treatment of lung resection tissue AMs with ARDS BAL fluid induces impairment in efferocytosis similar to that observed in patients with ARDS. However, AM phagocytosis is preserved following ARDS BAL treatment. This specific impairment in AM efferocytosis can be partially restored by inhibition of ROCK. This in vitro model of ARDS is a useful tool to investigate the mechanisms by which the inflammatory alveolar microenvironment of ARDS induces AM dysfunction.

12.
Front Endocrinol (Lausanne) ; 12: 733611, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512556

RESUMO

The role of tissue specific metabolism of endogenous glucocorticoids (GCs) in the pathogenesis of human disease has been a field of intense interest over the last 20 years, fuelling clinical trials of metabolism inhibitors in the treatment of an array of metabolic diseases. Localised pre-receptor metabolism of endogenous and therapeutic GCs by the 11ß-hydroxysteroid dehydrogenase (11ß-HSD) enzymes (which interconvert endogenous GCs between their inactive and active forms) are increasingly recognised as being critical in mediating both their positive and negative actions on bone homeostasis. In this review we explore the roles of endogenous and therapeutic GC metabolism by the 11ß-HSD enzymes in the context of bone metabolism and bone cell function, and consider future strategies aimed at modulating this system in order to manage and treat various bone diseases.


Assuntos
Doenças Ósseas/etiologia , Osso e Ossos/metabolismo , Glucocorticoides/metabolismo , 11-beta-Hidroxiesteroide Desidrogenases/metabolismo , 11-beta-Hidroxiesteroide Desidrogenases/fisiologia , Animais , Desenvolvimento Ósseo/fisiologia , Doenças Ósseas/metabolismo , Doenças Ósseas/patologia , Osso e Ossos/fisiologia , Glucocorticoides/fisiologia , Humanos
13.
Int J Mol Sci ; 22(15)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34360594

RESUMO

Glucocorticoids provide indispensable anti-inflammatory therapies. However, metabolic adverse effects including muscle wasting restrict their use. The enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) modulates peripheral glucocorticoid responses through pre-receptor metabolism. This study investigates how 11ß-HSD1 influences skeletal muscle responses to glucocorticoid therapy for chronic inflammation. We assessed human skeletal muscle biopsies from patients with rheumatoid arthritis and osteoarthritis for 11ß-HSD1 activity ex vivo. Using the TNF-α-transgenic mouse model (TNF-tg) of chronic inflammation, we examined the effects of corticosterone treatment and 11ß-HSD1 global knock-out (11ßKO) on skeletal muscle, measuring anti-inflammatory gene expression, muscle weights, fiber size distribution, and catabolic pathways. Muscle 11ß-HSD1 activity was elevated in patients with rheumatoid arthritis and correlated with inflammation markers. In murine skeletal muscle, glucocorticoid administration suppressed IL6 expression in TNF-tg mice but not in TNF-tg11ßKO mice. TNF-tg mice exhibited reductions in muscle weight and fiber size with glucocorticoid therapy. In contrast, TNF-tg11ßKO mice were protected against glucocorticoid-induced muscle atrophy. Glucocorticoid-mediated activation of catabolic mediators (FoxO1, Trim63) was also diminished in TNF-tg11ßKO compared to TNF-tg mice. In summary, 11ß-HSD1 knock-out prevents muscle atrophy associated with glucocorticoid therapy in a model of chronic inflammation. Targeting 11ß-HSD1 may offer a strategy to refine the safety of glucocorticoids.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , Artrite Reumatoide/tratamento farmacológico , Deleção de Genes , Glucocorticoides/efeitos adversos , Atrofia Muscular/prevenção & controle , Osteoartrite do Quadril/tratamento farmacológico , Animais , Artrite Reumatoide/patologia , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/genética , Atrofia Muscular/patologia , Osteoartrite do Quadril/patologia
15.
Ann Rheum Dis ; 80(2): 250-260, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33162397

RESUMO

OBJECTIVES: The enzyme 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) plays a well-characterised role in the metabolism and activation of endogenous glucocorticoids (GCs). However, despite its potent upregulation at sites of inflammation, its role in peripheral metabolism and action of therapeutic GCs remains poorly understood. We investigated the contribution of 11ß-HSD1 to the anti-inflammatory properties of the active GC corticosterone, administered at therapeutic doses in murine models of polyarthritis. METHODS: Using the tumour necrosis factor-tg and K/BxN serum-induced models of polyarthritis, we examined the anti-inflammatory properties of oral administration of corticosterone in animals with global, myeloid and mesenchymal targeted transgenic deletion of 11ß-HSD1. Disease activity and joint inflammation were scored daily. Joint destruction and measures of local and systemic inflammation were determined by histology, micro-CT, quantitative RT-PCR, fluorescence activated cell sorting and ELISA. RESULTS: Global deletion of 11ß-HSD1 resulted in a profound GC resistance in animals receiving corticosterone, characterised by persistent synovitis, joint destruction and inflammatory leucocyte infiltration. This was partially reproduced with myeloid, but not mesenchymal 11ß-HSD1 deletion, where paracrine GC signalling between cell populations was shown to overcome targeted deletion of 11ß-HSD1. CONCLUSIONS: We identify an entirely novel component of therapeutic GC action, whereby following their systemic metabolism, they require peripheral reactivation and amplification by 11ß-HSD1 at sites of inflammation to deliver their anti-inflammatory therapeutic effects. This study provides a novel mechanistic understanding of the anti-inflammatory properties of therapeutic GCs and their targeting to sites of inflammation in polyarthritis.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Anti-Inflamatórios/farmacologia , Artrite/tratamento farmacológico , Corticosterona/farmacologia , Glucocorticoides/farmacologia , Animais , Artrite/enzimologia , Modelos Animais de Doenças , Camundongos
16.
J Clin Endocrinol Metab ; 106(1): 174-187, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33098644

RESUMO

BACKGROUND: The enzyme 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) determines prereceptor metabolism and activation of glucocorticoids within peripheral tissues. Its dysregulation has been implicated in a wide array of metabolic diseases, leading to the development of selective 11ß-HSD1 inhibitors. We examined the impact of the reversible competitive 11ß-HSD1 inhibitor, AZD4017, on the metabolic profile in an overweight female cohort with idiopathic intracranial hypertension (IIH). METHODS: We conducted a UK multicenter phase II randomized, double-blind, placebo-controlled trial of 12-week treatment with AZD4017. Serum markers of glucose homeostasis, lipid metabolism, renal and hepatic function, inflammation and androgen profiles were determined and examined in relation to changes in fat and lean mass by dual-energy X-ray absorptiometry. RESULTS: Patients receiving AZD4017 showed significant improvements in lipid profiles (decreased cholesterol, increased high-density lipoprotein [HDL] and cholesterol/HDL ratio), markers of hepatic function (decreased alkaline phosphatase and gamma-glutamyl transferase), and increased lean muscle mass (1.8%, P < .001). No changes in body mass index, fat mass, and markers of glucose metabolism or inflammation were observed. Patients receiving AZD4017 demonstrated increased levels of circulating androgens, positively correlated with changes in total lean muscle mass. CONCLUSIONS: These beneficial metabolic changes represent a reduction in risk factors associated with raised intracranial pressure and represent further beneficial therapeutic outcomes of 11ß-HSD1 inhibition by AZD4017 in this overweight IIH cohort. In particular, beneficial changes in lean muscle mass associated with AZD4017 may reflect new applications for this nature of inhibitor in the management of conditions such as sarcopenia.


Assuntos
Lipídeos/sangue , Músculos/efeitos dos fármacos , Niacinamida/análogos & derivados , Piperidinas/uso terapêutico , Pseudotumor Cerebral/tratamento farmacológico , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , Adolescente , Adulto , Composição Corporal/efeitos dos fármacos , Método Duplo-Cego , Feminino , Humanos , Resistência à Insulina , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipidômica , Pessoa de Meia-Idade , Músculos/diagnóstico por imagem , Músculos/metabolismo , Músculos/patologia , Niacinamida/farmacologia , Niacinamida/uso terapêutico , Obesidade/complicações , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Obesidade/patologia , Tamanho do Órgão/efeitos dos fármacos , Sobrepeso/complicações , Sobrepeso/tratamento farmacológico , Sobrepeso/metabolismo , Sobrepeso/patologia , Piperidinas/farmacologia , Placebos , Pseudotumor Cerebral/complicações , Pseudotumor Cerebral/metabolismo , Pseudotumor Cerebral/patologia , Reino Unido , Adulto Jovem
17.
Front Physiol ; 11: 597675, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329046

RESUMO

Cachexia is the involuntary loss of muscle and adipose tissue that strongly affects mortality and treatment efficacy in patients with cancer or chronic inflammatory disease. Currently, no specific treatments or interventions are available for patients developing this disorder. Given the well-documented involvement of pro-inflammatory cytokines in muscle and fat metabolism in physiological responses and in the pathophysiology of chronic inflammatory disease and cancer, considerable interest has revolved around their role in mediating cachexia. This has been supported by association studies that report increased levels of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) in some, but not all, cancers and in chronic inflammatory diseases such as chronic obstructive pulmonary disease (COPD) and rheumatoid arthritis (RA). In addition, preclinical studies including animal disease models have provided a substantial body of evidence implicating a causal contribution of systemic inflammation to cachexia. The presence of inflammatory cytokines can affect skeletal muscle through several direct mechanisms, relying on activation of the corresponding receptor expressed by muscle, and resulting in inhibition of muscle protein synthesis (MPS), elevation of catabolic activity through the ubiquitin-proteasomal system (UPS) and autophagy, and impairment of myogenesis. Additionally, systemic inflammatory mediators indirectly contribute to muscle wasting through dysregulation of tissue and organ systems, including GCs via the hypothalamus-pituitary-adrenal (HPA) axis, the digestive system leading to anorexia-cachexia, and alterations in liver and adipocyte behavior, which subsequently impact on muscle. Finally, myokines secreted by skeletal muscle itself in response to inflammation have been implicated as autocrine and endocrine mediators of cachexia, as well as potential modulators of this debilitating condition. While inflammation has been shown to play a pivotal role in cachexia development, further understanding how these cytokines contribute to disease progression is required to reveal biomarkers or diagnostic tools to help identify at risk patients, or enable the design of targeted therapies to prevent or delay the progression of cachexia.

18.
PLoS One ; 15(7): e0235702, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32634159

RESUMO

Rheumatoid arthritis (RA) is accompanied by pain, inflammation and muscle weakness. Skeletal muscle inflammation and inactivity are independently associated with muscle insulin resistance and atrophy. Our objective was to identify early molecular and biochemical markers in muscle from a rodent model of RA relative to control and subsequently identify commonality in muscle gene expression between this model and muscle from RA patients. Pain behaviour and locomotor activity were measured in a collagen-induced arthritis (CIA) model of RA (n = 9) and control (n = 9) rats. Energy substrates and metabolites, total alkaline-soluble protein:DNA ratio and mRNA abundance of 46 targeted genes were also determined in Extensor digitorum longus muscle. Expression of targeted mRNAs was quantified in Vastus Lateralis muscle from RA patients (n = 7) and healthy age-matched control volunteers (n = 6). CIA rats exhibited pain behaviour (p<0.01) and reduced activity (p<0.05) compared to controls. Muscle glycogen content was less (p<0.05) and muscle lactate content greater (p<0.01) in CIA rats. The bioinformatics analysis of muscle mRNA abundance differences from the control, predicted the activation of muscle protein metabolism and inhibition of muscle carbohydrate and fatty acid metabolism in CIA rats. Compared to age-matched control volunteers, RA patients exhibited altered muscle mRNA expression of 8 of the transcripts included as targets in the CIA model of RA. In conclusion, muscle energy metabolism and metabolic gene expression were altered in the CIA model, which was partly corroborated by targeted muscle mRNA measurements in RA patients. This research highlights the negative impact of RA on skeletal muscle metabolic homeostasis.


Assuntos
Artrite Reumatoide/complicações , Músculo Esquelético/metabolismo , Doenças Musculares/etiologia , Idoso , Animais , Artrite Experimental/metabolismo , Artrite Reumatoide/metabolismo , Biomarcadores , Modelos Animais de Doenças , Feminino , Glicogênio/metabolismo , Humanos , Inflamação , Locomoção , Pessoa de Meia-Idade , Doenças Musculares/metabolismo , Mialgia/etiologia , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos Lew , Transcriptoma
19.
Nat Rev Rheumatol ; 16(3): 133-144, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32034322

RESUMO

Therapeutic glucocorticoids have been widely used in rheumatic diseases since they became available over 60 years ago. Despite the advent of more specific biologic therapies, a notable proportion of individuals with chronic rheumatic diseases continue to be treated with these drugs. Glucocorticoids are powerful, broad-spectrum anti-inflammatory agents, but their use is complicated by an equally broad range of adverse effects. The specific cellular mechanisms by which glucocorticoids have their therapeutic action have been difficult to identify, and attempts to develop more selective drugs on the basis of the action of glucocorticoids have proven difficult. The actions of glucocorticoids seem to be highly cell-type and context dependent. Despite emerging data on the effect of tissue-specific manipulation of glucocorticoid receptors in mouse models of inflammation, the cell types and intracellular targets of glucocorticoids in rheumatic diseases have not been fully identified. Although showing some signs of decline, the use of systemic glucocorticoids in rheumatology is likely to continue to be widespread, and careful consideration is required by rheumatologists to balance the beneficial effects and deleterious effects of these agents.


Assuntos
Glucocorticoides/uso terapêutico , Doenças Reumáticas/tratamento farmacológico , Animais , Humanos , Resultado do Tratamento
20.
Int J Mol Sci ; 20(22)2019 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-31744114

RESUMO

Due to their potent immunomodulatory anti-inflammatory properties, synthetic glucocorticoids (GCs) are widely utilized in the treatment of chronic inflammatory disease. In this review, we examine our current understanding of how chronic inflammation and commonly used therapeutic GCs interact to regulate bone and muscle metabolism. Whilst both inflammation and therapeutic GCs directly promote systemic osteoporosis and muscle wasting, the mechanisms whereby they achieve this are distinct. Importantly, their interactions in vivo are greatly complicated secondary to the directly opposing actions of GCs on a wide array of pro-inflammatory signalling pathways that underpin catabolic and anti-anabolic metabolism. Several clinical studies have attempted to address the net effects of therapeutic glucocorticoids on inflammatory bone loss and muscle wasting using a range of approaches. These have yielded a wide array of results further complicated by the nature of inflammatory disease, underlying the disease management and regimen of GC therapy. Here, we report the latest findings related to these pathway interactions and explore the latest insights from murine models of disease aimed at modelling these processes and delineating the contribution of pre-receptor steroid metabolism. Understanding these processes remains paramount in the effective management of patients with chronic inflammatory disease.


Assuntos
Osso e Ossos/efeitos dos fármacos , Glucocorticoides/farmacologia , Inflamação/tratamento farmacológico , Músculo Esquelético/efeitos dos fármacos , Animais , Osso e Ossos/metabolismo , Glucocorticoides/uso terapêutico , Humanos , Inflamação/metabolismo , Inflamação/patologia , Músculo Esquelético/metabolismo , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Osteoporose/patologia , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...