Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trop Anim Health Prod ; 56(2): 70, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324093

RESUMO

The main objective of this study is to determine the impact of the camel livestock system on individual and herd performances of milk production, lactation curve, fats, and protein concentrations. For this purpose, 13 she-camels of Sahraoui breed from the south eastern Algeria and belonging and semi-intensive system (N = 6) and intensive system (N = 7) were studied. Recording and sampling of milk were carried out at regular intervals during a full lactation. The lactation curve was estimated using Wood's gamma function and the t-test of independent groups was carried out to compare lactation performances, lactation curve, and reproductive parameters. The overall average daily milk (DMY), fat (DFY), and protein (DPY) yield were 6.77 ± 0.82 kg/day, 4.15 ± 0.91%, and 4.49 ± 0.20%, respectively. The mean of total milk yield (TMY) was 2696.39 ± 343.86 kg during a mean lactation length (LL) of 398.38 ± 20.65 days. The peak of milk production (6.79 ± 0.68 kg) was reached at 93.9 ± 55.8 days after calving. The open day (DO) and inter-calving interval (ICI) recorded in this study were 348.38 ± 30.33 and 723.38 ± 30.33 days, respectively. There is no significant difference (p > 0.05) between intensive and semi-intensive breeding systems for TMY (2795.39 ± 261.88 kg vs. 2580.89 ± 414.43 kg), DMY (6.96 ± 0.66 kg vs. 6.55 ± 1.00 kg), and LL (402.14 ± 21.18 days vs. 394 ± 21.03 days). However, the total amount of fat was significantly higher in intensive system (182.02 ± 33.91 kg) and the DPY content was significantly higher in semi-intensive system (4.60 ± 0.13%). The parameters α, ß, and γ of lactation, fat, and protein curves between the two systems showed a highly significant difference (p < 0.01) for the parameters (α and ß) for the milk production curve, significant (p < 0.05) for the time to reach peak yield, and no significance for the other parameters. The corresponding values of the coefficient of determination (R2) were 0.62, 0.35 for milk yield (p > 0.05), 0.12, 0.13 (p > 0.05) for fat, and 0.03, 0.11 (p < 0.05) for protein, in the intensive and semi-intensive systems, respectively. In addition, DO and ICI were not significantly different between the livestock systems, but were higher in the intensive system than the semi-intensive system (337.17 ± 26.26 vs. 712.17 ± 26.26, respectively). The study concluded that the intensive system had a higher milk performance with a more efficient lactation curve. The incomplete gamma model (Wood) used in this study was inappropriate for estimating milk yield, but acceptable for fat and protein.


Assuntos
Camelus , Lactação , Feminino , Animais , Reprodução , Leite , África do Norte , Gado
2.
PLoS One ; 12(1): e0168672, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28103238

RESUMO

Knowledge on genetic diversity and structure of camel populations is fundamental for sustainable herd management and breeding program implementation in this species. Here we characterized a total of 331 camels from Northern Africa, representative of six populations and thirteen Algerian and Egyptian geographic regions, using 20 STR markers. The nineteen polymorphic loci displayed an average of 9.79 ± 5.31 alleles, ranging from 2 (CVRL8) to 24 (CVRL1D). Average He was 0.647 ± 0.173. Eleven loci deviated significantly from Hardy-Weinberg proportions (P<0.05), due to excess of homozygous genotypes in all cases except one (CMS18). Distribution of genetic diversity along a weak geographic gradient as suggested by network analysis was not supported by either unsupervised and supervised Bayesian clustering. Traditional extensive/nomadic herding practices, together with the historical use as a long-range beast of burden and its peculiar evolutionary history, with domestication likely occurring from a bottlenecked and geographically confined wild progenitor, may explain the observed genetic patterns.


Assuntos
Camelus/genética , África do Norte , Argélia , Animais , Teorema de Bayes , Cruzamento , Camelus/sangue , Egito , Evolução Molecular , Variação Genética , Genética Populacional , Homozigoto , Gado/sangue , Gado/genética , Repetições de Microssatélites
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...