Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 37(22): 4202-4208, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34132786

RESUMO

MOTIVATION: Viruses infect, reprogram and kill microbes, leading to profound ecosystem consequences, from elemental cycling in oceans and soils to microbiome-modulated diseases in plants and animals. Although metagenomic datasets are increasingly available, identifying viruses in them is challenging due to poor representation and annotation of viral sequences in databases. RESULTS: Here, we establish efam, an expanded collection of Hidden Markov Model (HMM) profiles that represent viral protein families conservatively identified from the Global Ocean Virome 2.0 dataset. This resulted in 240 311 HMM profiles, each with at least 2 protein sequences, making efam >7-fold larger than the next largest, pan-ecosystem viral HMM profile database. Adjusting the criteria for viral contig confidence from 'conservative' to 'eXtremely Conservative' resulted in 37 841 HMM profiles in our efam-XC database. To assess the value of this resource, we integrated efam-XC into VirSorter viral discovery software to discover viruses from less-studied, ecologically distinct oxygen minimum zone (OMZ) marine habitats. This expanded database led to an increase in viruses recovered from every tested OMZ virome by ∼24% on average (up to ∼42%) and especially improved the recovery of often-missed shorter contigs (<5 kb). Additionally, to help elucidate lesser-known viral protein functions, we annotated the profiles using multiple databases from the DRAM pipeline and virion-associated metaproteomic data, which doubled the number of annotations obtainable by standard, single-database annotation approaches. Together, these marine resources (efam and efam-XC) are provided as searchable, compressed HMM databases that will be updated bi-annually to help maximize viral sequence discovery and study from any ecosystem. AVAILABILITY AND IMPLEMENTATION: The resources are available on the iVirus platform at (doi.org/10.25739/9vze-4143). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Microbiota , Vírus , Animais , Proteínas Virais , Software , Metagenômica/métodos
2.
Microbiol Resour Announc ; 10(1)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33414314

RESUMO

Here, we report the genome sequence of Tenacibaculum mesophilum strain ECR, which was isolated from the river/ocean interface at Trunk River in Falmouth, Massachusetts. The isolation and sequencing were performed as part of the 2016 and 2018 Microbial Diversity courses at the Marine Biological Laboratory in Woods Hole, Massachusetts.

3.
Nat Genet ; 51(9): 1315-1320, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31406348

RESUMO

Bacterial speciation is a fundamental evolutionary process characterized by diverging genotypic and phenotypic properties. However, the selective forces that affect genetic adaptations and how they relate to the biological changes that underpin the formation of a new bacterial species remain poorly understood. Here, we show that the spore-forming, healthcare-associated enteropathogen Clostridium difficile is actively undergoing speciation. Through large-scale genomic analysis of 906 strains, we demonstrate that the ongoing speciation process is linked to positive selection on core genes in the newly forming species that are involved in sporulation and the metabolism of simple dietary sugars. Functional validation shows that the new C. difficile produces spores that are more resistant and have increased sporulation and host colonization capacity when glucose or fructose is available for metabolism. Thus, we report the formation of an emerging C. difficile species, selected for metabolizing simple dietary sugars and producing high levels of resistant spores, that is adapted for healthcare-mediated transmission.


Assuntos
Aclimatação/genética , Clostridioides difficile/genética , Infecções por Clostridium/transmissão , Especiação Genética , Esporos Bacterianos/crescimento & desenvolvimento , Açúcares/metabolismo , Virulência/genética , Antibacterianos/farmacologia , Clostridioides difficile/isolamento & purificação , Infecções por Clostridium/metabolismo , Infecções por Clostridium/microbiologia , Genoma Bacteriano , Genômica , Humanos , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo
4.
ISME J ; 12(6): 1605-1618, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29568113

RESUMO

Phage-host interactions are critical to ecology, evolution, and biotechnology. Central to those is infection efficiency, which remains poorly understood, particularly in nature. Here we apply genome-wide transcriptomics and proteomics to investigate infection efficiency in nature's own experiment: two nearly identical (genetically and physiologically) Bacteroidetes bacterial strains (host18 and host38) that are genetically intractable, but environmentally important, where phage infection efficiency varies. On host18, specialist phage phi18:3 infects efficiently, whereas generalist phi38:1 infects inefficiently. On host38, only phi38:1 infects, and efficiently. Overall, phi18:3 globally repressed host18's transcriptome and proteome, expressed genes that likely evaded host restriction/modification (R/M) defenses and controlled its metabolism, and synchronized phage transcription with translation. In contrast, phi38:1 failed to repress host18's transcriptome and proteome, did not evade host R/M defenses or express genes for metabolism control, did not synchronize transcripts with proteins and its protein abundances were likely targeted by host proteases. However, on host38, phi38:1 globally repressed host transcriptome and proteome, synchronized phage transcription with translation, and infected host38 efficiently. Together these findings reveal multiple infection inefficiencies. While this contrasts the single mechanisms often revealed in laboratory mutant studies, it likely better reflects the phage-host interaction dynamics that occur in nature.


Assuntos
Bacteriófagos/genética , Bacteriófagos/fisiologia , Bacteroidetes/virologia , Proteoma/genética , Transcriptoma , Bacteroidetes/fisiologia , Flavobacteriaceae/fisiologia , Flavobacteriaceae/virologia , Genômica , Metabolômica , Mutação , Biossíntese de Proteínas , Proteômica , Análise de Sequência de RNA , Transcrição Gênica
5.
ISME J ; 11(7): 1511-1520, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28291233

RESUMO

Viruses that infect bacteria (phages) can influence bacterial community dynamics, bacterial genome evolution and ecosystem biogeochemistry. These influences differ depending on whether phages establish lytic, chronic or lysogenic infections. Although the first two produce virion progeny, with lytic infections resulting in cell destruction, phages undergoing lysogenic infections replicate with cells without producing virions. The impacts of lysogeny are numerous and well-studied at the cellular level, but ecosystem-level consequences remain underexplored compared to those of lytic infections. Here, we review lysogeny from molecular mechanisms to ecological patterns to emerging approaches of investigation. Our goal is to highlight both its diversity and importance in complex communities. Altogether, using a combined viral ecology toolkit that is applied across broad model systems and environments will help us understand more of the diverse lifestyles and ecological impacts of lysogens in nature.


Assuntos
Bactérias/virologia , Bacteriófagos/fisiologia , Microbiologia Ambiental , Lisogenia/fisiologia , Fenômenos Fisiológicos Virais , Bactérias/genética
6.
BMC Genomics ; 17(1): 1020, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27964731

RESUMO

BACKGROUND: How the pathogen Clostridium difficile might survive, evolve and be transferred between reservoirs within the natural environment is poorly understood. Some ribotypes are found both in clinical and environmental settings. Whether these strains are distinct from each another and evolve in the specific environments is not established. The possession of a highly mobile genome has contributed to the genetic diversity and ongoing evolution of C. difficile. Interpretations of genetic diversity have been limited by fragmented assemblies resulting from short-read length sequencing approaches and by a limited understanding of epigenetic regulation of diversity. To address this, single molecule real time (SMRT) sequencing was used in this study as it produces high quality genome sequences, with resolution of repeat regions (including those found in mobile elements) and can generate data to determine methylation modifications across the sequence (the methylome). RESULTS: Chromosomal rearrangements and ribosomal operon duplications were observed in both genomes. The rearrangements occurred at insertion sites within two mobile genetic elements (MGEs), Tn6164 and Tn6293, present only in the M120 and CD105HS27 genomes, respectively. The gene content of these two transposons differ considerably which could impact upon horizontal gene transfer; differences include CDSs encoding methylases and a conjugative prophage only in Tn6164. To investigate mechanisms which could affect MGE transfer, the methylome, restriction modification (RM)  and the CRISPR/Cas systems were characterised for each strain. Notably, the environmental isolate, CD105HS27, does not share a consensus motif for m4C methylation, but has one additional spacer  when compared to the clinical isolate M120. CONCLUSIONS: These findings show key differences between the two strains in terms of their genetic capacity for MGE transfer. The carriage of horizontally transferred genes appear to have genome wide effects based on two different methylation patterns. The CRISPR/Cas system appears active although perhaps slow to evolve. Data suggests that both mechanisms are functional and impact upon horizontal gene transfer and genome evolution within C. difficile.


Assuntos
Clostridioides difficile/classificação , Clostridioides difficile/genética , Microbiologia Ambiental , Genoma Bacteriano , Genômica , Ribotipagem , Análise de Sequência de DNA , Sistemas CRISPR-Cas , Clostridioides difficile/isolamento & purificação , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Biologia Computacional/métodos , Metilação de DNA , Elementos de DNA Transponíveis , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
7.
Viruses ; 8(11)2016 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-27854339

RESUMO

Bacteriophages (phages) are increasingly being explored as therapeutic agents to combat bacterial diseases, including Clostridium difficile infections. Therapeutic phages need to be able to efficiently target and kill a wide range of clinically relevant strains. While many phage groups have yet to be investigated in detail, those with new and useful properties can potentially be identified when phages from newly studied geographies are characterised. Here, we report the isolation of C. difficile phages from soil samples from the north of Iraq. Two myoviruses, CDKM15 and CDKM9, were selected for detailed sequence analysis on the basis of their broad and potentially useful host range. CDKM9 infects 25/80 strains from 12/20 C. difficile ribotypes, and CDKM15 infects 20/80 strains from 9/20 ribotypes. Both phages can infect the clinically relevant ribotypes R027 and R001. Phylogenetic analysis based on whole genome sequencing revealed that the phages are genetically distinct from each other but closely related to other long-tailed myoviruses. A comparative genomic analysis revealed key differences in the genes predicted to encode for proteins involved in bacterial infection. Notably, CDKM15 carries a clustered regularly interspaced short palindromic repeat (CRISPR) array with spacers that are homologous to sequences in the CDKM9 genome and of phages from diverse localities. The findings presented suggest a possible shared evolutionary past for these phages and provides evidence of their widespread dispersal.


Assuntos
Bacteriófagos/classificação , Bacteriófagos/isolamento & purificação , Clostridioides difficile/virologia , Myoviridae/classificação , Myoviridae/isolamento & purificação , Bacteriófagos/genética , Bacteriófagos/fisiologia , DNA Viral/química , DNA Viral/genética , Genoma Viral , Especificidade de Hospedeiro , Iraque , Microscopia Eletrônica de Transmissão , Myoviridae/genética , Myoviridae/fisiologia , Filogenia , Análise de Sequência de DNA , Microbiologia do Solo , Vírion/ultraestrutura
8.
Antimicrob Agents Chemother ; 60(2): 968-81, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26643348

RESUMO

The microbiome dysbiosis caused by antibiotic treatment has been associated with both susceptibility to and relapse of Clostridium difficile infection (CDI). Bacteriophage (phage) therapy offers target specificity and dose amplification in situ, but few studies have focused on its use in CDI treatment. This mainly reflects the lack of strictly virulent phages that target this pathogen. While it is widely accepted that temperate phages are unsuitable for therapeutic purposes due to their transduction potential, analysis of seven C. difficile phages confirmed that this impact could be curtailed by the application of multiple phage types. Here, host range analysis of six myoviruses and one siphovirus was conducted on 80 strains representing 21 major epidemic and clinically severe ribotypes. The phages had complementary coverage, lysing 18 and 62 of the ribotypes and strains tested, respectively. Single-phage treatments of ribotype 076, 014/020, and 027 strains showed an initial reduction in the bacterial load followed by the emergence of phage-resistant colonies. However, these colonies remained susceptible to infection with an unrelated phage. In contrast, specific phage combinations caused the complete lysis of C. difficile in vitro and prevented the appearance of resistant/lysogenic clones. Using a hamster model, the oral delivery of optimized phage combinations resulted in reduced C. difficile colonization at 36 h postinfection. Interestingly, free phages were recovered from the bowel at this time. In a challenge model of the disease, phage treatment delayed the onset of symptoms by 33 h compared to the time of onset of symptoms in untreated animals. These data demonstrate the therapeutic potential of phage combinations to treat CDI.


Assuntos
Bacteriófagos/fisiologia , Clostridioides difficile/patogenicidade , Clostridioides difficile/virologia , Animais , Toxinas Bacterianas/metabolismo , Bacteriófagos/classificação , Bacteriófagos/genética , Clostridioides difficile/crescimento & desenvolvimento , Infecções por Clostridium/virologia , Modelos Animais de Doenças , Feminino , Especificidade de Hospedeiro , Mesocricetus , Filogenia , Ribotipagem , Esporos Bacterianos/virologia
9.
Genome Biol Evol ; 7(7): 1842-55, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-26019165

RESUMO

The bacterium Clostridium difficile is a significant cause of nosocomial infections worldwide. The pathogenic success of this organism can be attributed to its flexible genome which is characterized by the exchange of mobile genetic elements, and by ongoing genome evolution. Despite its pathogenic status, C. difficile can also be carried asymptomatically, and has been isolated from natural environments such as water and sediments where multiple strain types (ribotypes) are found in close proximity. These include ribotypes which are associated with disease, as well as those that are less commonly isolated from patients. Little is known about the genomic content of strains in such reservoirs in the natural environment. In this study, draft genomes have been generated for 13 C. difficile isolates from estuarine sediments including clinically relevant and environmental associated types. To identify the genetic diversity within this strain collection, whole-genome comparisons were performed using the assemblies. The strains are highly genetically diverse with regards to the C. difficile "mobilome," which includes transposons and prophage elements. We identified a novel transposon-like element in two R078 isolates. Multiple, related and unrelated, prophages were detected in isolates across ribotype groups, including two novel prophage elements and those related to the transducing phage φC2. The susceptibility of these isolates to lytic phage infection was tested using a panel of characterized phages found from the same locality. In conclusion, estuarine sediments are a source of genetically diverse C. difficile strains with a complex network of prophages, which could contribute to the emergence of new strains in clinics.


Assuntos
Clostridioides difficile/genética , Genoma Bacteriano , Prófagos/genética , Toxinas Bacterianas/genética , Clostridioides difficile/isolamento & purificação , Clostridioides difficile/patogenicidade , Clostridioides difficile/virologia , Microbiologia Ambiental , Estuários , Variação Genética , Sedimentos Geológicos/microbiologia , Virulência/genética
10.
Viruses ; 7(5): 2534-41, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-26008700

RESUMO

Currently, only three phages that infect the medically important bacterium Clostridium difficile have been discussed by the International Committee of Viral Taxonomy (ICTV). They are all myoviruses, and have been assigned to the genus "phicd119likevirus". An additional nine phages have since been described in the literature with their genome data available. The Phicd119likevirus is named after the type species: the myovirus ΦCD119 which was the first C. difficile phage to be sequenced. The two additional myoviruses, ϕCD27 and φC2, also fall into this genus based on the similarity of their genome and morphological characteristics. The other nine phages have not been assigned to this genus, and four of them do not fit the criteria for the current taxonomic grouping. We have applied protein clustering analysis to determine their phylogenetic relationships. From these results we propose an additional myoviridae genus, that we term "phiMMP04likevirus".


Assuntos
Bacteriófagos/classificação , Clostridioides difficile/virologia , Myoviridae/classificação , Filogenia , Bacteriófagos/genética , Bacteriófagos/ultraestrutura , Análise por Conglomerados , Biologia Computacional , Myoviridae/genética , Myoviridae/ultraestrutura , Homologia de Sequência de Aminoácidos , Proteínas Virais/genética
11.
mBio ; 5(5): e01045-13, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25161187

RESUMO

UNLABELLED: Clostridium difficile is an important human-pathogenic bacterium causing antibiotic-associated nosocomial infections worldwide. Mobile genetic elements and bacteriophages have helped shape C. difficile genome evolution. In many bacteria, phage infection may be controlled by a form of bacterial immunity called the clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas) system. This uses acquired short nucleotide sequences (spacers) to target homologous sequences (protospacers) in phage genomes. C. difficile carries multiple CRISPR arrays, and in this paper we examine the relationships between the host- and phage-carried elements of the system. We detected multiple matches between spacers and regions in 31 C. difficile phage and prophage genomes. A subset of the spacers was located in prophage-carried CRISPR arrays. The CRISPR spacer profiles generated suggest that related phages would have similar host ranges. Furthermore, we show that C. difficile strains of the same ribotype could either have similar or divergent CRISPR contents. Both synonymous and nonsynonymous mutations in the protospacer sequences were identified, as well as differences in the protospacer adjacent motif (PAM), which could explain how phages escape this system. This paper illustrates how the distribution and diversity of CRISPR spacers in C. difficile, and its prophages, could modulate phage predation for this pathogen and impact upon its evolution and pathogenicity. IMPORTANCE: Clostridium difficile is a significant bacterial human pathogen which undergoes continual genome evolution, resulting in the emergence of new virulent strains. Phages are major facilitators of genome evolution in other bacterial species, and we use sequence analysis-based approaches in order to examine whether the CRISPR/Cas system could control these interactions across divergent C. difficile strains. The presence of spacer sequences in prophages that are homologous to phage genomes raises an extra level of complexity in this predator-prey microbial system. Our results demonstrate that the impact of phage infection in this system is widespread and that the CRISPR/Cas system is likely to be an important aspect of the evolutionary dynamics in C. difficile.


Assuntos
Clostridioides difficile/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Genoma Bacteriano , Prófagos/genética , Sequência de Bases , Biodiversidade , Evolução Molecular , Análise em Microsséries , Dados de Sequência Molecular , Mutação , Alinhamento de Sequência , Análise de Sequência de DNA , Transcriptoma
12.
Bacteriophage ; 4: e29866, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25105060

RESUMO

Bacteriophages have an essential gene kit that enables their invasion, replication, and production. In addition to this "core" genome, they can carry "accessory" genes that dramatically impact bacterial biology, and presumably boost their own success. The content of phage genomes continue to surprise us by revealing new ways that viruses impact bacterial biology. The genome of a Clostridium difficile myovirus, phiCDHM1, contains homologs of three bacterial accessory gene regulator (agr) genes. The agr system is a type of quorum sensing (QS), via which the phage may modify C. difficile interactions with its environment. Although their mechanism of action is unknown, mutants in bacterial versions of these genes impact sporulation and virulence. To explore how phage QS genes may influence C. difficile biology, we examine the main categories of bacterial behavior that phages have been shown to influence and discuss how interactions via QS could influence behavior at a wider level.

13.
Front Microbiol ; 5: 184, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24808893

RESUMO

Phages that infect Clostridium difficile were first isolated for typing purposes in the 1980s, but their use was short lived. However, the rise of C. difficile epidemics over the last decade has triggered a resurgence of interest in using phages to combat this pathogen. Phage therapy is an attractive treatment option for C. difficile infection, however, developing suitable phages is challenging. In this review we summarize the difficulties faced by researchers in this field, and we discuss the solutions and strategies used for the development of C. difficile phages for use as novel therapeutics. Epidemiological data has highlighted the diversity and distribution of C. difficile, and shown that novel strains continue to emerge in clinical settings. In parallel with epidemiological studies, advances in molecular biology have bolstered our understanding of C. difficile biology, and our knowledge of phage-host interactions in other bacterial species. These three fields of biology have therefore paved the way for future work on C. difficile phages to progress and develop. Benefits of using C. difficile phages as therapeutic agents include the fact that they have highly specific interactions with their bacterial hosts. Studies also show that they can reduce bacterial numbers in both in vitro and in vivo systems. Genetic analysis has revealed the genomic diversity among these phages and provided an insight into their taxonomy and evolution. No strictly virulent C. difficile phages have been reported and this contributes to the difficulties with their therapeutic exploitation. Although treatment approaches using the phage-encoded endolysin protein have been explored, the benefits of using "whole-phages" are such that they remain a major research focus. Whilst we don't envisage working with C. difficile phages will be problem-free, sufficient study should inform future strategies to facilitate their development to combat this problematic pathogen.

14.
PLoS One ; 9(1): e85131, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24475037

RESUMO

The transfer of novel genetic material into the genomes of bacterial viruses (phages) has been widely documented in several host-phage systems. Bacterial genes are incorporated into the phage genome and, if retained, subsequently evolve within them. The expression of these phage genes can subvert or bolster bacterial processes, including altering bacterial pathogenicity. The phage phiCDHM1 infects Clostridium difficile, a pathogenic bacterium that causes nosocomial infections and is associated with antibiotic treatment. Genome sequencing and annotation of phiCDHM1 shows that despite being closely related to other C. difficile myoviruses, it has several genes that have not been previously reported in any phage genomes. Notably, these include three homologs of bacterial genes from the accessory gene regulator (agr) quorum sensing (QS) system. These are; a pre-peptide (AgrD) of an autoinducing peptide (AIP), an enzyme which processes the pre-peptide (AgrB) and a histidine kinase (AgrC) that detects the AIP to activate a response regulator. Phylogenetic analysis of the phage and C. difficile agr genes revealed that there are three types of agr loci in this species. We propose that the phage genes belonging to a third type, agr3, and have been horizontally transferred from the host. AgrB and AgrC are transcribed during the infection of two different strains. In addition, the phage agrC appears not to be confined to the phiCDHM1 genome as it was detected in genetically distinct C. difficile strains. The discovery of QS gene homologs in a phage genome presents a novel way in which phages could influence their bacterial hosts, or neighbouring bacterial populations. This is the first time that these QS genes have been reported in a phage genome and their distribution both in C. difficile and phage genomes suggests that the agr3 locus undergoes horizontal gene transfer within this species.


Assuntos
Bacteriófagos/fisiologia , Genes Virais , Genoma Viral , Percepção de Quorum/genética , Transdução de Sinais , Sequência de Aminoácidos , Bacteriófagos/classificação , Bacteriófagos/ultraestrutura , Clostridioides difficile/virologia , Evolução Molecular , Ordem dos Genes , Transferência Genética Horizontal , Variação Genética , Interações Hospedeiro-Patógeno , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Transcrição Gênica
15.
Appl Environ Microbiol ; 78(17): 6027-34, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22706062

RESUMO

Prophages are encoded in most genomes of sequenced Clostridium difficile strains. They are key components of the mobile genetic elements and, as such, are likely to influence the biology of their host strains. The majority of these phages are not amenable to propagation, and therefore the development of a molecular marker is a useful tool with which to establish the extent and diversity of C. difficile prophage carriage within clinical strains. To design markers, several candidate genes were analyzed including structural and holin genes. The holin gene is the only gene present in all sequenced phage genomes, conserved at both terminals, with a variable mid-section. This allowed us to design two sets of degenerate PCR primers specific to C. difficile myoviruses and siphoviruses. Subsequent PCR analysis of 16 clinical C. difficile ribotypes showed that 15 of them are myovirus positive, and 2 of them are also siphovirus positive. Antibiotic induction and transmission electron microscope analysis confirmed the molecular prediction of myoviruses and/or siphovirus presence. Phylogenetic analysis of the holin sequences identified three groups of C. difficile phages, two within the myoviruses and a divergent siphovirus group. The marker also produced tight groups within temperate phages that infect other taxa, including Clostridium perfringens, Clostridium botulinum, and Bacillus spp., which suggests the potential application of the holin gene to study prophage carriage in other bacteria. This study reveals the high incidence of prophage carriage in clinically relevant strains of C. difficile and correlates the molecular data to the morphological observation.


Assuntos
Clostridioides difficile/virologia , Variação Genética , Prófagos/genética , Prófagos/isolamento & purificação , Antibacterianos/metabolismo , Clostridioides difficile/classificação , Clostridioides difficile/genética , Clostridioides difficile/isolamento & purificação , Infecções por Clostridium/microbiologia , Primers do DNA/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Viral/química , DNA Viral/genética , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Myoviridae/genética , Myoviridae/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Ribotipagem , Análise de Sequência de DNA , Siphoviridae/genética , Siphoviridae/isolamento & purificação , Estados Unidos , Proteínas Virais/genética , Ativação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...