Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transbound Emerg Dis ; 69(2): 465-476, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33506644

RESUMO

The geographic location and heterogeneous multi-ethnic population of Dubai (United Arab Emirates; UAE) provide a unique setting to explore the global molecular epidemiology of SARS-CoV-2 and relationship between different viral strains and disease severity. We systematically selected (i.e. every 100th individual in the central Dubai COVID-19 database) 256 patients by age, sex, disease severity and month to provide a representative sample of laboratory-confirmed COVID-19 patients (nasopharyngeal swab PCR positive) during the first wave of the UAE outbreak (January to June 2020). Sociodemographic and clinical data were extracted from medical records and full SARS-CoV-2 genome sequences extracted from nasopharyngeal swabs were analysed. Older age was significantly associated with COVID-19-associated hospital admission and mortality. Overweight/obese or diabetic patients were 3-4 times more likely to be admitted to hospital and intensive care unit (ICU). Sequencing data showed multiple independent viral introductions into the UAE from Europe, Iran and Asia (29 January-18 March), and these early strains seeded significant clustering consistent with almost exclusive community-based transmission between April and June 2020. Majority of sequenced strains (N = 60, 52%) were from the European cluster consistent with the higher infectivity rates associated with the D614G mutation carried by most strains in this cluster. A total of 986 mutations were identified in 115 genomes, 272 were unique (majority were missense, n = 134) and 20/272 mutations were novel. A missense (Q271R) and synonymous (R41R) mutation in the S and N proteins, respectively, were identified in 2/27 patients with severe COVID-19 but not in patients with mild or moderate disease (0/86; p = .05, Fisher's Exact Test). Both patients were women (51-64 years) with no significant underlying health conditions. The same two mutations were identified in a healthy 37-year-old Indian man who was hospitalized in India due to COVID-19. Our findings provide evidence for continued community-based transmission of the European strains in the Dubai population and highlight new mutations that might be associated with severe disease in otherwise healthy adults.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , COVID-19/epidemiologia , COVID-19/veterinária , Europa (Continente) , Feminino , Estudos de Associação Genética/veterinária , Humanos , SARS-CoV-2/genética
2.
Comput Struct Biotechnol J ; 19: 153-160, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33425248

RESUMO

Characterizing key molecular and cellular pathways involved in COVID-19 is essential for disease prognosis and management. We perform shotgun transcriptome sequencing of human RNA obtained from nasopharyngeal swabs of patients with COVID-19, and identify a molecular signature associated with disease severity. Specifically, we identify globally dysregulated immune related pathways, such as cytokine-cytokine receptor signaling, complement and coagulation cascades, JAK-STAT, and TGF- ß signaling pathways in all, though to a higher extent in patients with severe symptoms. The excessive release of cytokines and chemokines such as CCL2, CCL22, CXCL9 and CXCL12 and certain interferons and interleukins related genes like IFIH1, IFI44, IFIT1 and IL10 were significantly higher in patients with severe clinical presentation compared to mild and moderate presentations. Differential gene expression analysis identified a small set of regulatory genes that might act as strong predictors of patient outcome. Our data suggest that rapid transcriptome analysis of nasopharyngeal swabs can be a powerful approach to quantify host molecular response and may provide valuable insights into COVID-19 pathophysiology.

3.
Sci Rep ; 10(1): 17720, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33082405

RESUMO

International travel played a significant role in the early global spread of SARS-CoV-2. Understanding transmission patterns from different regions of the world will further inform global dynamics of the pandemic. Using data from Dubai in the United Arab Emirates (UAE), a major international travel hub in the Middle East, we establish SARS-CoV-2 full genome sequences from the index and early COVID-19 patients in the UAE. The genome sequences are analysed in the context of virus introductions, chain of transmissions, and possible links to earlier strains from other regions of the world. Phylogenetic analysis showed multiple spatiotemporal introductions of SARS-CoV-2 into the UAE from Asia, Europe, and the Middle East during the early phase of the pandemic. We also provide evidence for early community-based transmission and catalogue new mutations in SARS-CoV-2 strains in the UAE. Our findings contribute to the understanding of the global transmission network of SARS-CoV-2.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/diagnóstico , Pneumonia Viral/diagnóstico , Adulto , Idoso , Ásia/epidemiologia , Betacoronavirus/classificação , Betacoronavirus/isolamento & purificação , COVID-19 , Criança , Pré-Escolar , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Europa (Continente)/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Pandemias , Filogenia , Pneumonia Viral/epidemiologia , Pneumonia Viral/virologia , SARS-CoV-2 , Análise Espaço-Temporal , Viagem , Emirados Árabes Unidos/epidemiologia , Sequenciamento Completo do Genoma , Adulto Jovem
4.
Clin Chem ; 66(11): 1450-1458, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32715310

RESUMO

BACKGROUND: With the gradual reopening of economies and resumption of social life, robust surveillance mechanisms should be implemented to control the ongoing COVID-19 pandemic. Unlike RT-qPCR, SARS-CoV-2 whole genome sequencing (cWGS) has the added advantage of identifying cryptic origins of the virus, and the extent of community-based transmissions versus new viral introductions, which can in turn influence public health policy decisions. However, the practical and cost considerations of cWGS should be addressed before it is widely implemented. METHODS: We performed shotgun transcriptome sequencing using RNA extracted from nasopharyngeal swabs of patients with COVID-19, and compared it to targeted SARS-CoV-2 genome amplification and sequencing with respect to virus detection, scalability, and cost-effectiveness. To track virus origin, we used open-source multiple sequence alignment and phylogenetic tools to compare the assembled SARS-CoV-2 genomes to publicly available sequences. RESULTS: We found considerable improvement in whole genome sequencing data quality and viral detection using amplicon-based target enrichment of SARS-CoV-2. With enrichment, more than 99% of the sequencing reads mapped to the viral genome, compared to an average of 0.63% without enrichment. Consequently, an increase in genome coverage was obtained using substantially less sequencing data, enabling higher scalability and sizable cost reductions. We also demonstrated how SARS-CoV-2 genome sequences can be used to determine their possible origin through phylogenetic analysis including other viral strains. CONCLUSIONS: SARS-CoV-2 whole genome sequencing is a practical, cost-effective, and powerful approach for population-based surveillance and control of viral transmission in the next phase of the COVID-19 pandemic.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/transmissão , Pneumonia Viral/transmissão , Sequenciamento Completo do Genoma/métodos , COVID-19 , Custos e Análise de Custo , Genoma Viral , Humanos , Armazenamento e Recuperação da Informação , Pandemias , Filogenia , Vigilância da População , SARS-CoV-2 , Sequenciamento Completo do Genoma/economia
5.
Comput Struct Biotechnol J ; 18: 1020-1027, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32382396

RESUMO

Clinical exome sequencing (CES) has become a routine diagnostic tool in several pediatric subspecialties, with a reported average diagnostic yield of ~25% in this patient poulation. The utility of CES in the United Arab Emirates (UAE) has not been previously investigated, most likely due to the lack of the appropriate tertiary pediatric centers and diagnostic genomic facilities in this country. Here, we report, for the first time, CES findings on a multispecialty pediatric cohort in the UAE (N = 51). This cohort, which was mostly Emirati (86%; 44/51), was followed at Al Jalila Children's Hospital (AJCH), the first and only dedicated tertiary pediatric center in the country. CES demonstrates a high diagnostic yield (41%; 21/51) in this cohort, where 55% (28/51) had previous non-diagnostic genetic testing while for the remaining individuals (45%), CES was the first-tier test. Given the reported high consanguinity rate in this population, 48% of the positive cases (10/21) were due to genes associated with recessive conditions. However, 11 out of 21 positive cases (52%) were due to heterozygous pathogenic variants in genes known to cause dominantly inherited disorders, including a case with a dual diagnosis attributed to two different genes (2%; 1/51), and another case with a novel de novo variant and new phenotypic features for a known gene (2%; 1/51). Overall, we have identified 13 novel clinically significant variants and showed that application of CES as a first-tier test plays a significant role in genetic diagnosis and management of Emirati pediatric patients.

6.
Artigo em Inglês | MEDLINE | ID: mdl-30533869

RESUMO

Here, we report the draft genome sequence of Bacillus cereus strain UAEU-H3K6M1, which was isolated from petroleum sludge in the desert. It is composed of around 5.4 Mbp and has a GC content of 35%. Functional annotation and pathway modeling showed multiple genes with potential bioremediation abilities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...