Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38747674

RESUMO

RATIONALE: Idiopathic pulmonary fibrosis (IPF) affects subpleural lung, but is considered to spare small airways. Micro-CT studies demonstrated small airway reduction in end-stage IPF explanted lungs, raising questions about small airway involvement in early-stage disease. Endobronchial optical coherence tomography (EB-OCT) is a volumetric imaging modality that detects microscopic features from subpleural to proximal airways. We use EB-OCT to evaluate small airways in early IPF and control subjects in vivo. METHODS: EB-OCT was performed in 12 IPF and 5 control subjects (matched by age, sex, smoking-history, height, BMI). IPF subjects had early disease with mild restriction (FVC: 83.5% predicted), diagnosed per current guidelines and confirmed by surgical biopsy. EB-OCT volumetric imaging was acquired bronchoscopically in multiple, distinct, bilateral lung locations (total: 97 sites). IPF imaging sites were classified by severity into affected (all criteria for UIP present) and less affected (some but not all criteria for UIP present) sites. Bronchiole count and small airway stereology metrics were measured for each EB-OCT imaging site. RESULTS: Compared to control subjects (mean: 11.2 bronchioles/cm3; SD: 6.2), there was significant bronchiole reduction in IPF subjects (42% loss; mean: 6.5/cm3; SD: 3.4; p=0.0039), including in IPF affected (48% loss; mean: 5.8/cm3; SD: 2.8; p<0.00001) and IPF less affected (33% loss; mean: 7.5/cm3; SD: 4.1; p=0.024) sites. Stereology metrics showed IPF affected small airways were significantly larger and more distorted/irregular than in IPF less affected sites and control subjects. IPF less affected and control airways were statistically indistinguishable for all stereology parameters (p=0.36-1.0). CONCLUSION: EB-OCT demonstrated marked bronchiolar loss in early IPF (between 30 and 50%), even in areas minimally affected by disease, compared to matched controls. These findings support small airway disease as a feature of early IPF, providing novel insight into pathogenesis and potential therapeutic targets.

2.
Clin Chest Med ; 45(2): 475-488, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38816101

RESUMO

Bronchiolitis refers to a small airways disease and may be classified by etiology and histologic features. In cellular bronchiolitis inflammatory cells involve the small airway wall and peribronchiolar alveoli and manifest on CT as centrilobular nodules of solid or ground glass attenuation. Constrictive bronchiolitis refers to luminal narrowing by concentric fibrosis. Direct CT signs of small airway disease include centrilobular nodules and branching tree-in-bud opacities. An indirect sign is mosaic attenuation that may be exaggerated on expiratory CT and represent air trapping. Imaging findings can be combined with clinical and pathologic data to facilitate a more accurate diagnosis.


Assuntos
Bronquiolite , Tomografia Computadorizada por Raios X , Humanos , Bronquiolite/diagnóstico por imagem , Bronquiolite/diagnóstico
3.
bioRxiv ; 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38712233

RESUMO

Myofibroblast differentiation, essential for driving extracellular matrix synthesis in pulmonary fibrosis, requires increased glycolysis. While glycolytic cells must export lactate, the contributions of lactate transporters to myofibroblast differentiation are unknown. In this study, we investigated how MCT1 and MCT4, key lactate transporters, influence myofibroblast differentiation and experimental pulmonary fibrosis. Our findings reveal that inhibiting MCT1 or MCT4 reduces TGFß-stimulated pulmonary myofibroblast differentiation in vitro and decreases bleomycin-induced pulmonary fibrosis in vivo. Through comprehensive metabolic analyses, including bioenergetics, stable isotope tracing, metabolomics, and imaging mass spectrometry in both cells and mice, we demonstrate that inhibiting lactate transport enhances oxidative phosphorylation, reduces reactive oxygen species production, and diminishes glucose metabolite incorporation into fibrotic lung regions. Furthermore, we introduce VB253, a novel MCT4 inhibitor, which ameliorates pulmonary fibrosis in both young and aged mice, with comparable efficacy to established antifibrotic therapies. These results underscore the necessity of lactate transport for myofibroblast differentiation, identify MCT1 and MCT4 as promising pharmacologic targets in pulmonary fibrosis, and support further evaluation of lactate transport inhibitors for patients for whom limited therapeutic options currently exist.

4.
Nature ; 629(8013): 869-877, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38693267

RESUMO

Airway hillocks are stratified epithelial structures of unknown function1. Hillocks persist for months and have a unique population of basal stem cells that express genes associated with barrier function and cell adhesion. Hillock basal stem cells continually replenish overlying squamous barrier cells. They exhibit dramatically higher turnover than the abundant, largely quiescent classic pseudostratified airway epithelium. Hillocks resist a remarkably broad spectrum of injuries, including toxins, infection, acid and physical injury because hillock squamous cells shield underlying hillock basal stem cells from injury. Hillock basal stem cells are capable of massive clonal expansion that is sufficient to resurface denuded airway, and eventually regenerate normal airway epithelium with each of its six component cell types. Hillock basal stem cells preferentially stratify and keratinize in the setting of retinoic acid signalling inhibition, a known cause of squamous metaplasia2,3. Here we show that mouse hillock expansion is the cause of vitamin A deficiency-induced squamous metaplasia. Finally, we identify human hillocks whose basal stem cells generate functional squamous barrier structures in culture. The existence of hillocks reframes our understanding of airway epithelial regeneration. Furthermore, we show that hillocks are one origin of 'squamous metaplasia', which is long thought to be a precursor of lung cancer.


Assuntos
Plasticidade Celular , Células Epiteliais , Regeneração , Mucosa Respiratória , Células-Tronco , Animais , Feminino , Humanos , Masculino , Camundongos , Células Epiteliais/citologia , Células Epiteliais/patologia , Metaplasia/etiologia , Metaplasia/patologia , Mucosa Respiratória/citologia , Mucosa Respiratória/lesões , Mucosa Respiratória/patologia , Células-Tronco/citologia , Tretinoína/metabolismo , Tretinoína/farmacologia , Vitamina A/metabolismo , Vitamina A/farmacologia , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos C57BL
8.
Arch Pathol Lab Med ; 148(2): 168-177, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37226833

RESUMO

CONTEXT.­: The pathologic diagnosis of usual interstitial pneumonia (UIP) remains a challenging area, and application of histologic UIP guidelines has proved difficult. OBJECTIVE.­: To understand current practice approaches by pulmonary pathologists for the histologic diagnosis of UIP and other fibrotic interstitial lung diseases (ILDs). DESIGN.­: The Pulmonary Pathology Society (PPS) ILD Working Group developed and sent a 5-part survey on fibrotic ILD electronically to the PPS membership. RESULTS.­: One hundred sixty-one completed surveys were analyzed. Of the respondents, 89% reported using published histologic features in clinical guidelines for idiopathic pulmonary fibrosis (IPF) in their pathologic diagnosis; however, there was variability in reporting terminology, quantity and quality of histologic features, and the use of guideline categorization. Respondents were very likely to have access to pulmonary pathology colleagues (79%), pulmonologists (98%), and radiologists (94%) to discuss cases. Half of respondents reported they may alter their pathologic diagnosis based on additional clinical and radiologic history if it is pertinent. Airway-centered fibrosis, granulomas, and types of inflammatory infiltrates were considered important, but there was poor agreement on how these features are defined. CONCLUSIONS.­: There is significant consensus among the PPS membership on the importance of histologic guidelines/features of UIP. There are unmet needs for (1) consensus and standardization of diagnostic terminology and incorporation of recommended histopathologic categories from the clinical IPF guidelines into pathology reports, (2) agreement on how to incorporate into the report relevant clinical and radiographic information, and (3) defining the quantity and quality of features needed to suggest alternative diagnoses.


Assuntos
Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Humanos , Consenso , Tomografia Computadorizada por Raios X/métodos , Doenças Pulmonares Intersticiais/diagnóstico , Doenças Pulmonares Intersticiais/patologia , Fibrose Pulmonar Idiopática/diagnóstico , Fibrose Pulmonar Idiopática/patologia , Pulmão/diagnóstico por imagem , Pulmão/patologia , Fibrose
9.
Int J Radiat Oncol Biol Phys ; 118(5): 1228-1239, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38072325

RESUMO

PURPOSE: Radiation-induced lung injury (RILI) is a progressive inflammatory process seen after irradiation for lung cancer. The disease can be insidious, often characterized by acute pneumonitis followed by chronic fibrosis with significant associated morbidity. No therapies are approved for RILI, and accurate disease quantification is a major barrier to improved management. Here, we sought to noninvasively quantify RILI using a molecular imaging probe that specifically targets type 1 collagen in mouse models and patients with confirmed RILI. METHODS AND MATERIALS: Using a murine model of lung radiation, mice were imaged with EP-3533, a type 1 collagen probe, to characterize the development of RILI and to assess disease mitigation after losartan treatment. The human analog probe 68Ga-CBP8, targeting type 1 collagen, was tested on excised human lung tissue containing RILI and was quantified via autoradiography. 68Ga-CBP8 positron emission tomography was used to assess RILI in vivo in 6 human subjects. RESULTS: Murine models demonstrated that probe signal correlated with progressive RILI severity over 6 months. The probe was sensitive to mitigation of RILI by losartan. Excised human lung tissue with RILI had increased binding versus unirradiated control tissue, and 68Ga-CBP8 uptake correlated with collagen proportional area. Human imaging revealed significant 68Ga-CBP8 uptake in areas of RILI and minimal background uptake. CONCLUSIONS: These findings support the ability of a molecular imaging probe targeted at type 1 collagen to detect RILI in preclinical models and human disease, suggesting a role for targeted molecular imaging of collagen in the assessment of RILI.


Assuntos
Lesão Pulmonar , Lesões por Radiação , Humanos , Animais , Camundongos , Lesão Pulmonar/diagnóstico por imagem , Lesão Pulmonar/etiologia , Lesão Pulmonar/metabolismo , Colágeno Tipo I/metabolismo , Radioisótopos de Gálio/metabolismo , Losartan/metabolismo , Pulmão/efeitos da radiação , Lesões por Radiação/metabolismo , Colágeno , Imagem Molecular
10.
Am J Respir Cell Mol Biol ; 70(2): 119-128, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37934676

RESUMO

Respiratory viral infections are frequent causes of acute respiratory distress syndrome (ARDS), a disabling condition with a mortality of up to 46%. The pulmonary endothelium plays an important role in the development of ARDS as well as the pathogenesis of pulmonary fibrosis; however, the therapeutic potential to modulate endothelium-dependent signaling to prevent deleterious consequences has not been well explored. Here, we used a clinically relevant influenza A virus infection model, endothelial cell-specific transgenic gain-of-function and loss-of-function mice as well as pharmacologic approaches and in vitro modeling, to define the mechanism by which S1PR1 expression is dampened during influenza virus infection and determine whether therapeutic augmentation of S1PR1 has the potential to reduce long-term postviral fibrotic complications. We found that the influenza virus-induced inflammatory milieu promoted internalization of S1PR1, which was pharmacologically inhibited with paroxetine, an inhibitor of GRK2. Moreover, genetic overexpression or administration of paroxetine days after influenza virus infection was sufficient to reduce postviral pulmonary fibrosis. Taken together, our data suggest that endothelial S1PR1 signaling provides critical protection against long-term fibrotic complications after pulmonary viral infection. These findings support the development of antifibrotic strategies that augment S1PR1 expression in virus-induced ARDS to improve long-term patient outcomes.


Assuntos
Infecções por Orthomyxoviridae , Fibrose Pulmonar , Síndrome do Desconforto Respiratório , Animais , Humanos , Camundongos , Endotélio/metabolismo , Paroxetina , Receptores de Esfingosina-1-Fosfato/metabolismo
11.
Am J Respir Crit Care Med ; 209(4): 362-373, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38113442

RESUMO

Despite progress in elucidation of disease mechanisms, identification of risk factors, biomarker discovery, and the approval of two medications to slow lung function decline in idiopathic pulmonary fibrosis and one medication to slow lung function decline in progressive pulmonary fibrosis, pulmonary fibrosis remains a disease with a high morbidity and mortality. In recognition of the need to catalyze ongoing advances and collaboration in the field of pulmonary fibrosis, the NHLBI, the Three Lakes Foundation, and the Pulmonary Fibrosis Foundation hosted the Pulmonary Fibrosis Stakeholder Summit on November 8-9, 2022. This workshop was held virtually and was organized into three topic areas: 1) novel models and research tools to better study pulmonary fibrosis and uncover new therapies, 2) early disease risk factors and methods to improve diagnosis, and 3) innovative approaches toward clinical trial design for pulmonary fibrosis. In this workshop report, we summarize the content of the presentations and discussions, enumerating research opportunities for advancing our understanding of the pathogenesis, treatment, and outcomes of pulmonary fibrosis.


Assuntos
Pesquisa Biomédica , Fibrose Pulmonar Idiopática , Estados Unidos , Humanos , National Heart, Lung, and Blood Institute (U.S.) , Lagos , Fibrose Pulmonar Idiopática/diagnóstico , Fibrose Pulmonar Idiopática/terapia , Fatores de Risco
12.
Front Immunol ; 14: 1269335, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37942334

RESUMO

Introduction: Severe respiratory illness is the most prominent manifestation of patients infected with SARS-CoV-2, and yet the molecular mechanisms underlying severe lung disease in COVID-19 affected patients still require elucidation. Human leukocyte antigen class I (HLA-I) expression is crucial for antigen presentation and the host's response to SARS-CoV-2. Methods: To gain insights into the immune response and molecular pathways involved in severe lung disease, we performed immunopeptidomic and proteomic analyses of lung tissues recovered at four COVID-19 autopsy and six non-COVID-19 transplants. Results: We found signals of tissue injury and regeneration in lung fibroblast and alveolar type I/II cells, resulting in the production of highly immunogenic self-antigens within the lungs of COVID-19 patients. We also identified immune activation of the M2c macrophage as the primary source of HLA-I presentation and immunogenicity in this context. Additionally, we identified 28 lung signatures that can serve as early plasma markers for predicting infection and severe COVID-19 disease. These protein signatures were predominantly expressed in macrophages and epithelial cells and were associated with complement and coagulation cascades. Discussion: Our findings emphasize the significant role of macrophage-mediated immunity in the development of severe lung disease in COVID-19 patients.


Assuntos
COVID-19 , Humanos , COVID-19/patologia , SARS-CoV-2 , Proteômica , Pulmão , Biópsia
13.
Nat Immunol ; 24(12): 2091-2107, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37945820

RESUMO

Regulatory T (Treg) cell modulation of adaptive immunity and tissue homeostasis is well described; however, less is known about Treg cell-mediated regulation of the innate immune response. Here we show that deletion of ST2, the receptor for interleukin (IL)-33, on Treg cells increased granulocyte influx into the lung and increased cytokine production by innate lymphoid and γδ T cells without alteration of adaptive immunity to influenza. IL-33 induced high levels of the interleukin-1 receptor antagonist (IL-1Ra) in ST2+ Treg cells and deletion of IL-1Ra in Treg cells increased granulocyte influx into the lung. Treg cell-specific deletion of ST2 or IL-1Ra improved survival to influenza, which was dependent on IL-1. Adventitial fibroblasts in the lung expressed high levels of the IL-1 receptor and their chemokine production was suppressed by Treg cell-produced IL-1Ra. Thus, we define a new pathway where IL-33-induced IL-1Ra production by tissue Treg cells suppresses IL-1-mediated innate immune responses to respiratory viral infection.


Assuntos
Influenza Humana , Linfócitos T Reguladores , Humanos , Imunidade Inata , Proteína Antagonista do Receptor de Interleucina 1 , Interleucina-1/genética , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Interleucina-33/metabolismo , Linfócitos/metabolismo , Animais , Camundongos
14.
Radiology ; 309(1): e230984, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37874235

RESUMO

Background Gadolinium retention has been observed in organs of patients with normal renal function; however, the biodistribution and speciation of residual gadolinium is not well understood. Purpose To compare the pharmacokinetics, distribution, and speciation of four gadolinium-based contrast agents (GBCAs) in healthy rats using MRI, mass spectrometry, elemental imaging, and electron paramagnetic resonance (EPR) spectroscopy. Materials and Methods In this prospective animal study performed between November 2021 and September 2022, 32 rats received a dose of gadoterate, gadoteridol, gadobutrol, or gadobenate (2.0 mmol/kg) for 10 consecutive days. GBCA-naive rats were used as controls. Three-dimensional T1-weighted ultrashort echo time images and R2* maps of the kidneys were acquired at 3, 17, 34, and 52 days after injection. At 17 and 52 days after injection, gadolinium concentrations in 23 organ, tissue, and fluid specimens were measured with mass spectrometry; gadolinium distribution in the kidneys was evaluated using elemental imaging; and gadolinium speciation in the kidney cortex was assessed using EPR spectroscopy. Data were assessed with analysis of variance, Kruskal-Wallis test, analysis of response profiles, and Pearson correlation analysis. Results For all GBCAs, the kidney cortex exhibited higher gadolinium retention at 17 days after injection than all other specimens tested (mean range, 350-1720 nmol/g vs 0.40-401 nmol/g; P value range, .001-.70), with gadoteridol showing the lowest level of retention. Renal cortex R2* values correlated with gadolinium concentrations measured ex vivo (r = 0.95; P < .001), whereas no associations were found between T1-weighted signal intensity and ex vivo gadolinium concentration (r = 0.38; P = .10). EPR spectroscopy analysis of rat kidney cortex samples showed that all GBCAs were primarily intact at 52 days after injection. Conclusion Compared with other macrocyclic GBCAs, gadoteridol administration led to the lowest level of retention. The highest concentration of gadolinium was retained in the kidney cortex, but T1-weighted MRI was not sensitive for detecting residual gadolinium in this tissue. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Tweedle in this issue.


Assuntos
Meios de Contraste , Compostos Organometálicos , Ratos , Humanos , Animais , Gadolínio/farmacocinética , Distribuição Tecidual , Estudos Prospectivos , Encéfalo , Gadolínio DTPA , Imageamento por Ressonância Magnética/métodos
15.
medRxiv ; 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37808864

RESUMO

Rationale: Radiation-induced lung injury (RILI) is a progressive inflammatory process commonly seen following irradiation for lung cancer. The disease can be insidious, often characterized by acute pneumonitis followed by chronic fibrosis with significant associated morbidity. No therapies are approved for RILI, and accurate disease quantification is a major barrier to improved management. Objective: To noninvasively quantify RILI, utilizing a molecular imaging probe that specifically targets type 1 collagen in mouse models and patients with confirmed RILI. Methods: Using a murine model of lung radiation, mice were imaged with EP-3533, a type 1 collagen probe to characterize the development of RILI and to assess disease mitigation following losartan treatment. The human analog probe targeted against type 1 collagen, 68Ga-CBP8, was tested on excised human lung tissue containing RILI and quantified via autoradiography. Finally, 68Ga-CBP8 PET was used to assess RILI in vivo in six human subjects. Results: Murine models demonstrated that probe signal correlated with progressive RILI severity over six-months. The probe was sensitive to mitigation of RILI by losartan. Excised human lung tissue with RILI had increased binding vs unirradiated control tissue and 68Ga-CBP8 uptake correlated with collagen proportional area. Human imaging revealed significant 68Ga-CBP8 uptake in areas of RILI and minimal background uptake. Conclusions: These findings support the ability of a molecular imaging probe targeted at type 1 collagen to detect RILI in preclinical models and human disease, suggesting a role for targeted molecular imaging of collagen in the assessment of RILI.Clinical trial registered with www.clinicaltrials.gov (NCT04485286, NCT03535545).

17.
Mol Imaging Biol ; 25(5): 944-953, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37610609

RESUMO

PURPOSE: Idiopathic pulmonary fibrosis (IPF) is a destructive lung disease with a poor prognosis, an unpredictable clinical course, and inadequate therapies. There are currently no measures of disease activity to guide clinicians making treatment decisions. The aim of this study was to develop a PET probe to identify lung fibrogenesis using a pre-clinical model of pulmonary fibrosis, with potential for translation into clinical use to predict disease progression and inform treatment decisions. METHODS: Eight novel allysine-targeting chelators, PIF-1, PIF-2, …, PIF-8, with different aldehyde-reactive moieties were designed, synthesized, and radiolabeled with gallium-68 or copper-64. PET probe performance was assessed in C57BL/6J male mice 2 weeks after intratracheal bleomycin challenge and in naïve mice by dynamic PET/MR imaging and with biodistribution at 90 min post injection. Lung hydroxyproline and allysine were quantified ex vivo and histological staining for fibrosis and aldehyde was performed. RESULTS: In vivo screening of probes identified 68GaPIF-3 and 68GaPIF-7 as probes with high uptake in injured lung, high uptake in injured lung versus normal lung, and high uptake in injured lung versus adjacent liver and heart tissue. A crossover, intra-animal PET/MR imaging study of 68GaPIF-3 and 68GaPIF-7 confirmed 68GaPIF-7 as the superior probe. Specificity for fibrogenesis was confirmed in a crossover, intra-animal PET/MR imaging study with 68GaPIF-7 and a non-binding control compound, 68GaPIF-Ctrl. Substituting copper-64 for gallium-68 did not affect lung uptake or specificity indicating that either isotope could be used. CONCLUSION: A series of allysine-reactive PET probes with variations in the aldehyde-reactive moiety were evaluated in a pre-clinical model of lung fibrosis. The hydrazine-bearing probe, 68GaPIF-7, exhibited the highest uptake in fibrogenic lung, low uptake in surrounding liver or heart tissue, and low lung uptake in healthy mice and should be considered for further clinical translation.

18.
J Am Chem Soc ; 145(38): 20825-20836, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37589185

RESUMO

During fibroproliferation, protein-associated extracellular aldehydes are formed by the oxidation of lysine residues on extracellular matrix proteins to form the aldehyde allysine. Here we report three Mn(II)-based, small-molecule magnetic resonance probes that contain α-effect nucleophiles to target allysine in vivo and report on tissue fibrogenesis. We used a rational design approach to develop turn-on probes with a 4-fold increase in relaxivity upon targeting. The effects of aldehyde condensation rate and hydrolysis kinetics on the performance of the probes to detect tissue fibrogenesis non-invasively in mouse models were evaluated by a systemic aldehyde tracking approach. We showed that, for highly reversible ligations, off-rate was a stronger predictor of in vivo efficiency, enabling histologically validated, three-dimensional characterization of pulmonary fibrogenesis throughout the entire lung. The exclusive renal elimination of these probes allowed for rapid imaging of liver fibrosis. Reducing the hydrolysis rate by forming an oxime bond with allysine enabled delayed phase imaging of kidney fibrogenesis. The imaging efficacy of these probes, coupled with their rapid and complete elimination from the body, makes them strong candidates for clinical translation.


Assuntos
Ácido 2-Aminoadípico , Aldeídos , Camundongos , Animais , Ácido 2-Aminoadípico/química , Imageamento por Ressonância Magnética , Pulmão
19.
Sci Immunol ; 8(83): eabq6352, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37146132

RESUMO

Asthma is a chronic disease most commonly associated with allergy and type 2 inflammation. However, the mechanisms that link airway inflammation to the structural changes that define asthma are incompletely understood. Using a human model of allergen-induced asthma exacerbation, we compared the lower airway mucosa in allergic asthmatics and allergic non-asthmatic controls using single-cell RNA sequencing. In response to allergen, the asthmatic airway epithelium was highly dynamic and up-regulated genes involved in matrix degradation, mucus metaplasia, and glycolysis while failing to induce injury-repair and antioxidant pathways observed in controls. IL9-expressing pathogenic TH2 cells were specific to asthmatic airways and were only observed after allergen challenge. Additionally, conventional type 2 dendritic cells (DC2 that express CD1C) and CCR2-expressing monocyte-derived cells (MCs) were uniquely enriched in asthmatics after allergen, with up-regulation of genes that sustain type 2 inflammation and promote pathologic airway remodeling. In contrast, allergic controls were enriched for macrophage-like MCs that up-regulated tissue repair programs after allergen challenge, suggesting that these populations may protect against asthmatic airway remodeling. Cellular interaction analyses revealed a TH2-mononuclear phagocyte-basal cell interactome unique to asthmatics. These pathogenic cellular circuits were characterized by type 2 programming of immune and structural cells and additional pathways that may sustain and amplify type 2 signals, including TNF family signaling, altered cellular metabolism, failure to engage antioxidant responses, and loss of growth factor signaling. Our findings therefore suggest that pathogenic effector circuits and the absence of proresolution programs drive structural airway disease in response to type 2 inflammation.


Assuntos
Asma , Hipersensibilidade , Humanos , Antioxidantes , Asma/genética , Alérgenos , Inflamação
20.
bioRxiv ; 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37131719

RESUMO

During fibroproliferation, protein-associated extracellular aldehydes are formed by the oxidation of lysine residues on extracellular matrix proteins to form the aldehyde allysine. Here we report three Mn(II)-based, small molecule magnetic resonance (MR) probes that contain α-effect nucleophiles to target allysine in vivo and report on tissue fibrogenesis. We used a rational design approach to develop turn-on probes with a 4-fold increase in relaxivity upon targeting. The effects of aldehyde condensation rate and hydrolysis kinetics on the performance of the probes to detect tissue fibrogenesis noninvasively in mouse models were evaluated by a systemic aldehyde tracking approach. We showed that for highly reversible ligations, off-rate was a stronger predictor of in vivo efficiency, enabling histologically validated, three-dimensional characterization of pulmonary fibrogenesis throughout the entire lung. The exclusive renal elimination of these probes allowed for rapid imaging of liver fibrosis. Reducing the hydrolysis rate by forming an oxime bond with allysine enabled delayed phase imaging of kidney fibrogenesis. The imaging efficacy of these probes, coupled with their rapid and complete elimination from the body, make them strong candidates for clinical translation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...