Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 13(6)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37367926

RESUMO

The identification of metabolomic biomarkers relies on the analysis of large cohorts of patients compared to healthy controls followed by the validation of markers in an independent sample set. Indeed, circulating biomarkers should be causally linked to pathology to ensure that changes in the marker precede changes in the disease. However, this approach becomes unfeasible in rare diseases due to the paucity of samples, necessitating the development of new methods for biomarker identification. The present study describes a novel approach that combines samples from both mouse models and human patients to identify biomarkers of OPMD. We initially identified a pathology-specific metabolic fingerprint in murine dystrophic muscle. This metabolic fingerprint was then translated into (paired) murine serum samples and then to human plasma samples. This study identified a panel of nine candidate biomarkers that could predict muscle pathology with a sensitivity of 74.3% and specificity of 100% in a random forest model. These findings demonstrate that the proposed approach can identify biomarkers with good predictive performance and a higher degree of confidence in their relevance to pathology than markers identified in a small cohort of human samples alone. Therefore, this approach has a high potential utility for identifying circulating biomarkers in rare diseases.

2.
Methods Mol Biol ; 2587: 557-568, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36401050

RESUMO

Oculopharyngeal muscular dystrophy (OPMD) is a late-onset rare muscle disease affecting approximately 1 in 80,000 individuals worldwide. However, it can affect as much as 1:600 individuals in some populations due to a strong founder effect. The muscle pathology is characterized by progressive eyelid drooping (ptosis), swallowing difficulties (dysphagia), and limb weakness at later stages of disease progression. The genetic defect is associated with significant fibrotic deposition and atrophy in affected muscles. No treatments are available to cure the disease. Only surgical techniques to correct ptosis and swallowing are currently possible, though they carry a risk of recurrence. Myostatin is a negative regulator of muscle growth, and several strategies to downregulate its expression have been developed with the aim of improving muscle mass and strength in muscular pathologies. We recently showed that weekly systemic treatment of the A17 murine model of OPMD with a monoclonal antibody for myostatin improves body and muscle mass, increases muscle strength, and reduces muscle fibrosis. Here, we describe the methodology for repeated intraperitoneal delivery of myostatin antibody in the murine model. Furthermore, we detail the most relevant analyses to assess histopathological and functional improvements of this treatment in this mouse model.


Assuntos
Distrofia Muscular Oculofaríngea , Camundongos , Animais , Distrofia Muscular Oculofaríngea/genética , Distrofia Muscular Oculofaríngea/patologia , Miostatina , Anticorpos Monoclonais/uso terapêutico , Modelos Animais de Doenças , Imunoterapia
3.
Nucleic Acid Ther ; 31(6): 457-464, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34081545

RESUMO

Ribosomal protein L3-like (RPL3L) is a poorly characterized ribosomal protein that is exclusively expressed in skeletal and cardiac muscle. RPL3L is also downregulated in Duchenne muscular dystrophy (DMD), suggesting that it may play an important role in muscle biology. In this study, we investigated the role of RPL3L in skeletal muscle of healthy C57 and dystrophic mdx mice. We show that RPL3L is developmentally regulated and that intramuscular adeno-associated virus (AAV)-mediated RPL3L knockdown in the tibialis anterior of C57 and mdx mice results in increased specific force with improved resistance to eccentric contraction induced muscle damage in dystrophic muscles. The mechanism by which RPL3L knockdown improves muscle function remains unclear. Histological observations showed a significant increase in muscle length and decrease in muscle cross-sectional area after RPL3L inhibition suggesting that this ribosomal protein may play a role in myofiber morphology. The endogenous downregulation of RPL3L in DMD may be a protective mechanism that attempts to improve skeletal muscle function and counteract the dystrophic phenotype.


Assuntos
Distrofia Muscular de Duchenne , Proteína Ribossômica L3 , Animais , Modelos Animais de Doenças , Distrofina , Camundongos , Camundongos Endogâmicos mdx , Contração Muscular , Músculo Esquelético , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia
4.
Int J Mol Sci ; 21(17)2020 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-32842713

RESUMO

Small non-coding microRNAs (miRNAs) are involved in the regulation of mRNA stability. Their features, including high stability and secretion to biofluids, make them attractive as potential biomarkers for diverse pathologies. This is the first study reporting miRNA as potential biomarkers for oculopharyngeal muscular dystrophy (OPMD), an adult-onset myopathy. We hypothesized that miRNA that is differentially expressed in affected muscles from OPMD patients is secreted to biofluids and those miRNAs could be used as biomarkers for OPMD. We first identified candidate miRNAs from OPMD-affected muscles and from muscles from an OPMD mouse model using RNA sequencing. We then compared the OPMD-deregulated miRNAs to the literature and, subsequently, we selected a few candidates for expression studies in serum and saliva biofluids using qRT-PCR. We identified 126 miRNAs OPMD-deregulated in human muscles, but 36 deregulated miRNAs in mice only (pFDR < 0.05). Only 15 OPMD-deregulated miRNAs overlapped between the in humans and mouse studies. The majority of the OPMD-deregulated miRNAs showed opposite deregulation direction compared with known muscular dystrophies miRNAs (myoMirs), which are associated. In contrast, similar dysregulation direction was found for 13 miRNAs that are common between OPMD and aging muscles. A significant age-association (p < 0.05) was found for 17 OPMD-deregulated miRNAs (13.4%), whereas in controls, only six miRNAs (1.4%) showed a significant age-association, suggesting that miRNA expression in OPMD is highly age-associated. miRNA expression in biofluids revealed that OPMD-associated deregulation in saliva was similar to that in muscles, but not in serum. The same as in muscle, miRNA expression levels in saliva were also found to be associated with age (p < 0.05). Moreover, the majority of OPMD-miRNAs were found to be associated with dysphagia as an initial symptom. We suggest that levels of specific miRNAs in saliva can mark muscle degeneration in general and dysphagia in OPMD.


Assuntos
MicroRNAs/genética , Distrofia Muscular Oculofaríngea/genética , Saliva/fisiologia , Adulto , Fatores Etários , Idoso , Animais , Biomarcadores , Estudos de Casos e Controles , Transtornos de Deglutição/genética , Modelos Animais de Doenças , Expressão Gênica , Humanos , MicroRNAs/análise , MicroRNAs/sangue , Músculo Esquelético/fisiopatologia , Distrofia Muscular Oculofaríngea/etiologia , Análise de Sequência de RNA
5.
Front Physiol ; 11: 184, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194441

RESUMO

BACKGROUND: Oculopharyngeal muscular dystrophy (OPMD) is a late-onset muscle disease presented by ptosis, dysphagia, and limb weakness. Affected muscles display increased fibrosis and atrophy, with characteristic inclusion bodies in the nucleus. Myostatin is a negative regulator of muscle mass, and inhibition of myostatin has been demonstrated to improve symptoms in models of muscular dystrophy. METHODS: We systemically administered a monoclonal antibody to block myostatin in the A17 mouse model of OPMD at 42 weeks of age. The mice were administered a weekly dose of 10 mg/kg RK35 intraperitonially for 10 weeks, following which serum and histological analyses were performed on muscle samples. RESULTS: The administration of the antibody resulted in a significant decrease in serum myostatin and collagen deposition in muscles. However, minimal effects on body mass, muscle mass and myofiber diameter, or the density of intranuclear inclusions (INIs) (a hallmark of disease progression of OPMD) were observed. CONCLUSION: This study demonstrates that inhibition of myostatin does not revert muscle atrophy in a mouse model with established OPMD disease, but is effective at reducing observed histological markers of fibrosis in the treated muscles.

6.
J Cachexia Sarcopenia Muscle ; 10(5): 1016-1026, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31066242

RESUMO

BACKGROUND: Oculopharyngeal muscular dystrophy (OPMD) is a late-onset muscle disease affecting one per 80 000 of the general population characterized by profound dysphagia and ptosis, and limb weakness at later stages. Affected muscles are characterized by increased fibrosis and atrophy. Myostatin is a negative regulator of muscle mass, and inhibition of myostatin has been demonstrated to ameliorate symptoms in dystrophic muscles. METHODS: In this study, we performed a systemic delivery of a monoclonal antibody to immunologically block myostatin in the A17 mouse model of OPMD. The mice were administered a weekly dose of 10 mg/kg RK35 intraperitonially for 10 weeks, following which histological analyses were performed on the samples. RESULTS: This treatment significantly (P < 0.01) improved body mass (11%) and muscle mass (for the tibialis anterior and extensor digitorum longus by 19% and 41%) in the A17 mice treated with RK35 when compared to saline controls. Similarly, a significantly (P < 0.01) increased muscle strength (18% increase in maximal tetanic force) and myofibre diameter (17% and 44% for the tibialis anterior and extensor digitorum longus), and reduced expression of markers of muscle fibrosis (40% reduction in area of expression), was also observed. No change in the density of intranuclear inclusions (a hallmark of disease progression of OPMD) was however observed. CONCLUSIONS: Our study supports the clinical translation of such antibody-mediated inhibition of myostatin as a treatment of OPMD. This strategy has implications to be used as adjuvant therapies with gene therapy based approaches, or to stabilize the muscle prior to myoblast transplantation.


Assuntos
Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Distrofia Muscular Oculofaríngea/metabolismo , Distrofia Muscular Oculofaríngea/patologia , Miostatina/antagonistas & inibidores , Animais , Anticorpos Monoclonais/farmacologia , Biomarcadores , Composição Corporal , Imuno-Histoquímica , Camundongos , Força Muscular , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Distrofia Muscular Oculofaríngea/etiologia , Mioblastos/metabolismo
7.
Hum Mol Genet ; 28(10): 1694-1708, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30649389

RESUMO

Oculopharyngeal muscular dystrophy (OPMD) is a rare late onset genetic disease leading to ptosis, dysphagia and proximal limb muscles at later stages. A short abnormal (GCN) triplet expansion in the polyA-binding protein nuclear 1 (PABPN1) gene leads to PABPN1-containing aggregates in the muscles of OPMD patients. Here we demonstrate that treating mice with guanabenz acetate (GA), an FDA-approved antihypertensive drug, reduces the size and number of nuclear aggregates, improves muscle force, protects myofibers from the pathology-derived turnover and decreases fibrosis. GA targets various cell processes, including the unfolded protein response (UPR), which acts to attenuate endoplasmic reticulum (ER) stress. We demonstrate that GA increases both the phosphorylation of the eukaryotic translation initiation factor 2α subunit and the splicing of Xbp1, key components of the UPR. Altogether these data show that modulation of protein folding regulation is beneficial for OPMD and promote the further development of GA or its derivatives for treatment of OPMD in humans. Furthermore, they support the recent evidences that treating ER stress could be therapeutically relevant in other more common proteinopathies.


Assuntos
Guanabenzo/farmacologia , Distrofia Muscular Oculofaríngea/tratamento farmacológico , Proteína I de Ligação a Poli(A)/genética , Proteína 1 de Ligação a X-Box/genética , Processamento Alternativo/efeitos dos fármacos , Processamento Alternativo/genética , Animais , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fibrose/tratamento farmacológico , Fibrose/genética , Fibrose/patologia , Humanos , Camundongos , Distrofia Muscular Oculofaríngea/genética , Distrofia Muscular Oculofaríngea/patologia , Fosforilação/efeitos dos fármacos , Agregados Proteicos/efeitos dos fármacos , Agregados Proteicos/genética , Dobramento de Proteína , Resposta a Proteínas não Dobradas/efeitos dos fármacos
8.
Hum Gene Ther ; 26(5): 286-92, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25860803

RESUMO

Oculopharyngeal muscular dystrophy (OPMD) is a muscle-specific, late-onset degenerative disorder whereby muscles of the eyes (causing ptosis), throat (leading to dysphagia), and limbs (causing proximal limb weakness) are mostly affected. The disease is characterized by a mutation in the poly(A)-binding protein nuclear-1 (PABPN1) gene, resulting in a short GCG expansion in the polyalanine tract of PABPN1 protein. Accumulation of filamentous intranuclear inclusions in affected skeletal muscle cells constitutes the pathological hallmark of OPMD. This review highlights the current translational research advances in the treatment of OPMD. In vitro and in vivo disease models are described. Conventional and experimental therapeutic approaches are discussed with emphasis on novel molecular therapies including the use of intrabodies, gene therapy, and myoblast transfer therapy.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Terapia Genética , Distrofia Muscular Oculofaríngea/genética , Distrofia Muscular Oculofaríngea/terapia , Animais , Modelos Animais de Doenças , Humanos , Técnicas In Vitro , Corpos de Inclusão Intranuclear , Distrofia Muscular Oculofaríngea/tratamento farmacológico , Distrofia Muscular Oculofaríngea/cirurgia , Mutação , Proteína I de Ligação a Poli(A)/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...