Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
iScience ; 27(5): 109629, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38616920

RESUMO

ATR-X (alpha thalassemia, mental retardation, X-linked) syndrome features genital and testicular abnormalities including atypical genitalia and small testes with few seminiferous tubules. Our mouse model recapitulated the testicular defects when Atrx was deleted in Sertoli cells (ScAtrxKO) which displayed G2/M arrest and apoptosis. Here, we investigated the mechanisms underlying these defects. In control mice, Sertoli cells contain a single novel "GATA4 PML nuclear body (NB)" that contained the transcription factor GATA4, ATRX, DAXX, HP1α, and PH3 and co-localized with the Y chromosome short arm (Yp). ScAtrxKO mice contain single giant GATA4 PML-NBs with frequent DNA double-strand breaks (DSBs) in G2/M-arrested apoptotic Sertoli cells. HP1α and PH3 were absent from giant GATA4 PML-NBs indicating a failure in heterochromatin formation and chromosome condensation. Our data suggest that ATRX protects a Yp region from DNA damage, thereby preventing Sertoli cell death. We discuss Y chromosome damage/decondensation as a mechanism for testicular failure.

2.
Front Cell Dev Biol ; 12: 1337714, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38425503

RESUMO

SOX9 is a key transcription factor for testis determination and development. Mutations in and around the SOX9 gene contribute to Differences/Disorders of Sex Development (DSD). However, a substantial proportion of DSD patients lack a definitive genetic diagnosis. SOX9 target genes are potentially DSD-causative genes, yet only a limited subset of these genes has been investigated during testis development. We hypothesize that SOX9 target genes play an integral role in testis development and could potentially be causative genes in DSD. In this study, we describe a novel testicular target gene of SOX9, Trpc3. Trpc3 exhibits high expression levels in the SOX9-expressing male Sertoli cells compared to female granulosa cells in mouse fetal gonads between embryonic day 11.5 (E11.5) and E13.5. In XY Sox9 knockout gonads, Trpc3 expression is markedly downregulated. Moreover, culture of E11.5 XY mouse gonads with TRPC3 inhibitor Pyr3 resulted in decreased germ cell numbers caused by reduced germ cell proliferation. Trpc3 is also expressed in endothelial cells and Pyr3-treated E11.5 XY mouse gonads showed a loss of the coelomic blood vessel due to increased apoptosis of endothelial cells. In the human testicular cell line NT2/D1, TRPC3 promotes cell proliferation and controls cell morphology, as observed by xCELLigence and HoloMonitor real-time analysis. In summary, our study suggests that SOX9 positively regulates Trpc3 in mouse testes and TRPC3 may mediate SOX9 function during Sertoli, germ and endothelial cell development.

3.
Nat Rev Urol ; 20(7): 434-451, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37020056

RESUMO

Sex development relies on the sex-specific action of gene networks to differentiate the bipotential gonads of the growing fetus into testis or ovaries, followed by the differentiation of internal and external genitalia depending on the presence or absence of hormones. Differences in sex development (DSD) arise from congenital alterations during any of these processes, and are classified depending on sex chromosomal constitution as sex chromosome DSD, 46,XY DSD or 46,XX DSD. Understanding the genetics and embryology of typical and atypical sex development is essential for diagnosing, treating and managing DSD. Advances have been made in understanding the genetic causes of DSD over the past 10 years, especially for 46,XY DSD. Additional information is required to better understand ovarian and female development and to identify further genetic causes of 46,XX DSD, besides congenital adrenal hyperplasia. Ongoing research is focused on the discovery of further genes related to typical and atypical sex development and, therefore, on improving diagnosis of DSD.


Assuntos
Transtornos 46, XX do Desenvolvimento Sexual , Transtorno 46,XY do Desenvolvimento Sexual , Transtornos do Desenvolvimento Sexual , Masculino , Humanos , Feminino , Transtornos do Desenvolvimento Sexual/diagnóstico , Transtornos do Desenvolvimento Sexual/genética , Testículo , Desenvolvimento Sexual , Transtorno 46,XY do Desenvolvimento Sexual/complicações , Transtorno 46,XY do Desenvolvimento Sexual/genética , Transtorno 46,XY do Desenvolvimento Sexual/terapia , Transtornos 46, XX do Desenvolvimento Sexual/complicações , Transtornos 46, XX do Desenvolvimento Sexual/genética
4.
bioRxiv ; 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36798326

RESUMO

Background: We have generated a rat model similar to the Four Core Genotypes mouse model, allowing comparison of XX and XY rats with the same type of gonad. The model detects novel sex chromosome effects (XX vs. XY) that contribute to sex differences in any rat phenotype. Methods: XY rats were produced with an autosomal transgene of Sry , the testis-determining factor gene, which were fathers of XX and XY progeny with testes. In other rats, CRISPR-Cas9 technology was used to remove Y chromosome factors that initiate testis differentiation, producing fertile XY gonadal females that have XX and XY progeny with ovaries. These groups can be compared to detect sex differences caused by sex chromosome complement (XX vs. XY) and/or by gonadal hormones (rats with testes vs. ovaries). Results: We have measured numerous phenotypes to characterize this model, including gonadal histology, breeding performance, anogenital distance, levels of reproductive hormones, body and organ weights, and central nervous system sexual dimorphisms. Serum testosterone levels were comparable in adult XX and XY gonadal males. Numerous phenotypes previously found to be sexually differentiated by the action of gonadal hormones were found to be similar in XX and XY rats with the same type of gonad, suggesting that XX and XY rats with the same type of gonad have comparable levels of gonadal hormones at various stages of development. Conclusion: The results establish a powerful new model to discriminate sex chromosome and gonadal hormone effects that cause sexual differences in rat physiology and disease.

5.
Endocrinology ; 164(5)2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36786658

RESUMO

During sex determination in the mouse, fibroblast growth factor 9 signals through the fibroblast growth factor receptor 2c isoform (FGFR2c) to trigger Sertoli cell and testis development from 11.5 days post coitum (dpc). In the XX gonad, the FOXL2 and WNT4/RSPO1 pathways drive granulosa cell and ovarian development. The function of FGFR2 in the developing ovary, and whether FGFR2 is required in the testis after sex determination, is not clear. In fetal mouse gonads from 12.5 dpc, FGFR2 shows sexually dimorphic expression. In XX gonads, FGFR2c is coexpressed with FOXL2 in pregranulosa cells, whereas XY gonads show FGFR2b expression in germ cells. Deletion of Fgfr2c in XX mice led to a marked decrease/absence of germ cells by 13.5 dpc in the ovary. This indicates that FGFR2c in the somatic pregranulosa cells is required for the maintenance of germ cells. Surprisingly, on the Fgfr2c-/- background, the germ cell phenotype could be rescued by ablation of Foxl2, suggesting a novel mechanism whereby FGFR2 and FOXL2 act antagonistically during germ cell development. Consistent with low/absent FGFR2 expression in the Sertoli cells of 12.5 and 13.5 dpc XY gonads, XY AMH:Cre; Fgfr2flox/flox mice showed normal testis morphology and structures during fetal development and in adulthood. Thus, FGFR2 is not essential for maintaining Sertoli cell fate after sex determination. Combined, these data show that FGFR2 is not necessary for Sertoli cell function after sex determination but does play an important role in the ovary.


Assuntos
Ovário , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos , Masculino , Feminino , Camundongos , Animais , Ovário/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Gônadas/metabolismo , Testículo/metabolismo , Células Germinativas/metabolismo , Processos de Determinação Sexual
6.
Clin Genet ; 103(3): 277-287, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36349847

RESUMO

46,XY gonadal dysgenesis (GD) is a Disorder/Difference of Sex Development (DSD) that can present with phenotypes ranging from ambiguous genitalia to complete male-to-female sex reversal. Around 50% of 46,XY DSD cases receive a molecular diagnosis. In mice, Fibroblast growth factor 9 (FGF9) is an important component of the male sex-determining pathway. Two FGF9 variants reported to date disrupt testis development in mice, but not in humans. Here, we describe a female patient with 46,XY GD harbouring the rare FGF9 variant (missense mutation), NM_002010.2:c.583G > A;p.(Asp195Asn) (D195N). By biochemical and cell-based approaches, the D195N variant disrupts FGF9 protein homodimerisation and FGF9-heparin-binding, and reduces both Sertoli cell proliferation and Wnt4 repression. XY Fgf9D195N/D195N foetal mice show a transient disruption of testicular cord development, while XY Fgf9D195N/- foetal mice show partial male-to-female gonadal sex reversal. In the general population, the D195N variant occurs at an allele frequency of 2.4 × 10-5 , suggesting an oligogenic basis for the patient's DSD. Exome analysis of the patient reveals several known and novel variants in genes expressed in human foetal Sertoli cells at the time of sex determination. Taken together, our results indicate that disruption of FGF9 homodimerization impairs testis determination in mice and, potentially, also in humans in combination with other variants.


Assuntos
Fator 9 de Crescimento de Fibroblastos , Disgenesia Gonadal 46 XY , Humanos , Masculino , Feminino , Camundongos , Animais , Dimerização , Fator 9 de Crescimento de Fibroblastos/genética , Testículo , Gônadas , Disgenesia Gonadal 46 XY/genética
7.
Data Brief ; 42: 108230, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35592768

RESUMO

This dataset represents genes that are dysregulated in the postnatal day 12 (P12) mouse testis when ATRX is specifically inactivated in Sertoli cells (ScAtrxKO mice). The differentially expressed genes included in the dataset may play important roles in the testicular phenotypes observed in the ScAtrxKO mice, which were first reported in our previous work [1]. In fetal ScAtrxKO mice, Sertoli cells undergo apoptosis due to cell cycle defects, resulting in smaller testes with reduced tubule volume [1]. Adult ScAtrxKO mice show a wide range of spermatogenesis defects probably due to a failure of the dysfunctional ATRX protein to interact with the androgen receptor (AR) [1]. ATRX, a chromatin remodeling protein, is widely expressed in the human testis including Sertoli cells [2,3]. In XY individuals, the loss of ATRX leads to ATR-X (alpha thalassemia, mental retardation, X-linked) syndrome associated with a wide range of genital abnormalities such as hypospadias, ambiguous genitalia, and small testes with reduced tubule volume [4], [5], [6], [7], [8]. Our dataset contributes towards understanding the mechanism underlying ATRX regulation of testis development and spermatogenesis.

8.
Sex Dev ; 16(4): 270-282, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35306493

RESUMO

INTRODUCTION: Sex determination in eutherian mammals is controlled by the Y-linked gene Sry, which drives the formation of testes in male embryos. Despite extensive study, the genetic steps linking Sry action and male sex determination remain largely unknown. Here, we focused on Mmd2, a gene that encodes a member of the progestin and adipoQ receptor (PAQR) family. Mmd2 is expressed during the sex-determining period in XY but not XX gonads, suggesting a specific role in testis development. METHODS: We used CRISPR to generate mouse strains deficient in Mmd2 and its 2 closely related PAQR family members, Mmd and Paqr8, which are also expressed during testis development. Following characterization of Mmd2 expression in the developing testis, we studied sex determination in embryos from single knockout as well as Mmd2;Mmd and Mmd2;Paqr8 double knockout lines using quantitative RT-PCR and immunofluorescence. RESULTS: Analysis of knockout mice deficient in Sox9 and Nr5a1 revealed that Mmd2 operates downstream of these known sex-determining genes. However, fetal testis development progressed normally in Mmd2-null embryos. To determine if other genes might have compensated for the loss of Mmd2, we analyzed Paqr8 and Mmd-null embryos and confirmed that in both knockout lines, sex determination occurred normally. Finally, we generated Mmd2;Mmd and Mmd2;Paqr8 double-null embryos and again observed normal testis development. DISCUSSION: These results may reflect functional redundancy among PAQR factors, or their dispensability in gonadal development. Our findings highlight the difficulties involved in identifying genes with a functional role in sex determination and gonadal development through expression screening and loss-of-function analyses of individual candidate genes and may help to explain the paucity of genes in which variations have been found to cause human disorders/differences of sex development.


Assuntos
Gônadas , Processos de Determinação Sexual , Humanos , Camundongos , Masculino , Animais , Processos de Determinação Sexual/genética , Proteína da Região Y Determinante do Sexo/genética , Proteína da Região Y Determinante do Sexo/metabolismo , Gônadas/metabolismo , Testículo/metabolismo , Diferenciação Sexual/genética , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Mamíferos/genética , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo
9.
Hum Genet ; 140(12): 1625-1634, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34524523

RESUMO

ATR-X, an acronym for alpha thalassemia and mental retardation X-linked, syndrome is a congenital condition predominantly affecting males, characterized by mild to severe intellectual disability, facial, skeletal, urogenital, and hematopoietic anomalies. Less common are heart defects, eye anomalies, renal abnormalities, and gastrointestinal dysfunction. ATR-X syndrome is caused by germline variants in the ATRX gene. Until recently, the diagnosis of the ATR-X syndrome had been guided by the classical clinical manifestations and confirmed by molecular techniques. However, our new systematic analysis shows that the only clinical sign shared by all affected individuals is intellectual disability, with the other manifestations varying even within the same family. More than 190 different germline ATRX mutations in some 200 patients have been analyzed. With improved and more frequent analysis by molecular technologies, more subtle deletions and insertions have been detected recently. Moreover, emerging technologies reveal non-classic phenotypes of ATR-X syndrome as well as the description of a new clinical feature, the development of osteosarcoma which suggests an increased cancer risk in ATR-X syndrome. This review will focus on the different types of inherited ATRX mutations and their relation to clinical features in the ATR-X syndrome. We will provide an update of the frequency of clinical manifestations, the affected organs, and the genotype-phenotype correlations. Finally, we propose a shift in the diagnosis of ATR-X patients, from a clinical diagnosis to a molecular-based approach. This may assist clinicians in patient management, risk assessment and genetic counseling.


Assuntos
Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/fisiopatologia , Deficiência Intelectual Ligada ao Cromossomo X/terapia , Talassemia alfa/genética , Talassemia alfa/fisiopatologia , Talassemia alfa/terapia , Animais , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual Ligada ao Cromossomo X/diagnóstico , Técnicas de Diagnóstico Molecular , Mutação , Talassemia alfa/diagnóstico
10.
Clin Genet ; 99(2): 325-329, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33174625

RESUMO

Human multiple synostoses syndrome 3 is an autosomal dominant disorder caused by pathogenic variants in FGF9. Only two variants have been described in FGF9 in humans so far, and one in mice. Here we report a novel missense variant c.566C > G, p.(Pro189Arg) in FGF9. Functional studies showed this variant impairs FGF9 homodimerization, but not FGFR3c binding. We also review the findings of cases reported previously and report on additional features not described previously.


Assuntos
Fator 9 de Crescimento de Fibroblastos/genética , Mutação de Sentido Incorreto , Sinostose/genética , Anormalidades Múltiplas/genética , Adolescente , Fator 9 de Crescimento de Fibroblastos/metabolismo , Heterozigoto , Humanos , Masculino , Fenótipo , Ligação Proteica , Radiografia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Sinostose/diagnóstico por imagem , Sinostose/patologia
11.
Hum Mol Genet ; 29(13): 2148-2161, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32452519

RESUMO

In mice, male sex determination depends on FGF9 signalling via FGFR2c in the bipotential gonads to maintain the expression of the key testis gene SOX9. In humans, however, while FGFR2 mutations have been linked to 46,XY disorders of sex development (DSD), the role of FGF9 is unresolved. The only reported pathogenic mutations in human FGF9, FGF9S99N and FGF9R62G, are dominant and result in craniosynostosis (fusion of cranial sutures) or multiple synostoses (fusion of limb joints). Whether these synostosis-causing FGF9 mutations impact upon gonadal development and DSD etiology has not been explored. We therefore examined embryonic gonads in the well-characterized Fgf9 missense mouse mutants, Fgf9S99N and Fgf9N143T, which phenocopy the skeletal defects of FGF9S99N and FGF9R62G variants, respectively. XY Fgf9S99N/S99N and XY Fgf9N143T/N143T fetal mouse gonads showed severely disorganized testis cords and partial XY sex reversal at 12.5 days post coitum (dpc), suggesting loss of FGF9 function. By 15.5 dpc, testis development in both mutants had partly recovered. Mitotic analysis in vivo and in vitro suggested that the testicular phenotypes in these mutants arise in part through reduced proliferation of the gonadal supporting cells. These data raise the possibility that human FGF9 mutations causative for dominant skeletal conditions can also lead to loss of FGF9 function in the developing testis, at least in mice. Our data suggest that, in humans, testis development is largely tolerant of deleterious FGF9 mutations which lead to skeletal defects, thus offering an explanation as to why XY DSDs are rare in patients with pathogenic FGF9 variants.


Assuntos
Fator 9 de Crescimento de Fibroblastos/genética , Transtornos Ovotesticulares do Desenvolvimento Sexual/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Sinostose/genética , Animais , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Gônadas/crescimento & desenvolvimento , Gônadas/patologia , Humanos , Masculino , Camundongos , Mutação de Sentido Incorreto/genética , Transtornos Ovotesticulares do Desenvolvimento Sexual/patologia , Fatores de Transcrição SOX9/genética , Processos de Determinação Sexual/genética , Desenvolvimento Sexual/genética
12.
Proc Natl Acad Sci U S A ; 116(33): 16577-16582, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31371505

RESUMO

Parkinson's disease (PD) is a debilitating neurodegenerative disorder caused by the loss of midbrain dopamine (DA) neurons. While the cause of DA cell loss in PD is unknown, male sex is a strong risk factor. Aside from the protective actions of sex hormones in females, emerging evidence suggests that sex-chromosome genes contribute to the male bias in PD. We previously showed that the Y-chromosome gene, SRY, directly regulates adult brain function in males independent of gonadal hormone influence. SRY protein colocalizes with DA neurons in the male substantia nigra, where it regulates DA biosynthesis and voluntary movement. Here we demonstrate that nigral SRY expression is highly and persistently up-regulated in animal and human cell culture models of PD. Remarkably, lowering nigral SRY expression with antisense oligonucleotides in male rats diminished motor deficits and nigral DA cell loss in 6-hydroxydopamine (6-OHDA)-induced and rotenone-induced rat models of PD. The protective effect of the SRY antisense oligonucleotides was associated with male-specific attenuation of DNA damage, mitochondrial degradation, and neuroinflammation in the toxin-induced rat models of PD. Moreover, reducing nigral SRY expression diminished or removed the male bias in nigrostriatal degeneration, mitochondrial degradation, DNA damage, and neuroinflammation in the 6-OHDA rat model of PD, suggesting that SRY directly contributes to the sex differences in PD. These findings demonstrate that SRY directs a previously unrecognized male-specific mechanism of DA cell death and suggests that suppressing nigral Sry synthesis represents a sex-specific strategy to slow or prevent DA cell loss in PD.


Assuntos
Genes Ligados ao Cromossomo Y , Neuroproteção/genética , Doença de Parkinson/genética , Animais , Dano ao DNA , Modelos Animais de Doenças , Feminino , Humanos , Inflamação/patologia , Masculino , Mitofagia/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Oligonucleotídeos Antissenso/farmacologia , Oxidopamina , Doença de Parkinson/fisiopatologia , Ratos , Proteína da Região Y Determinante do Sexo/genética , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
13.
Lancet Diabetes Endocrinol ; 7(7): 560-574, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30803928

RESUMO

The diagnosis and management of children born with ambiguous genitalia is challenging for clinicians. Such differences of sex development (DSDs) are congenital conditions in which chromosomal, gonadal, or anatomical sex is atypical. The aetiology of DSDs is very heterogenous and a precise diagnosis is essential for management of genetic, endocrine, surgical, reproductive, and psychosocial issues. In this Review, we outline a step-by-step approach, compiled in a diagnostic algorithm, for the clinical assessment and molecular diagnosis of a patient with ambiguity of the external genitalia on initial presentation. We appraise established and emerging technologies and their effect on diagnosis, and discuss current controversies.


Assuntos
Transtornos do Desenvolvimento Sexual/diagnóstico , Desenvolvimento Sexual , Algoritmos , Diagnóstico Diferencial , Humanos , Recém-Nascido , Pessoas Intersexuais
14.
J Clin Endocrinol Metab ; 104(2): 390-396, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30247609

RESUMO

Context: There is a likely genetic component to gender dysphoria, but association study data have been equivocal. Objective: We explored the specific hypothesis that gender dysphoria in transgender women is associated with variants in sex hormone-signaling genes responsible for undermasculinization and/or feminization. Design: Subject-control analysis included 380 transgender women and 344 control male subjects. Associations and interactions were investigated between functional variants in 12 sex hormone-signaling genes and gender dysphoria in transgender women. Setting: Patients were recruited from the Monash Gender Clinic, Monash Health, Melbourne, Australia, and the University of California, Los Angeles. Patients: Caucasian (non-Latino) transgender women were recruited who received a diagnosis of transsexualism [Diagnostic and Statistical Manual of Mental Disorders (DSM)-IV) or gender dysphoria (DSM-V)] pre- or postoperatively. Most were receiving hormone treatment at the time of recruitment. Main Outcome Measured: Genomic DNA was genotyped for repeat length polymorphisms or single nucleotide polymorphisms. Results: A significant association was identified between gender dysphoria and ERα, SRD5A2, and STS alleles, as well as ERα and SULT2A1 genotypes. Several allele combinations were also overrepresented in transgender women, most involving AR (namely, AR-ERß, AR-PGR, AR-COMT, CYP17-SRD5A2). Overrepresented alleles and genotypes are proposed to undermasculinize/feminize on the basis of their reported effects in other disease contexts. Conclusion: Gender dysphoria may have an oligogenic component, with several genes involved in sex hormone-signaling contributing.


Assuntos
Disforia de Gênero/genética , Hormônios Esteroides Gonadais/metabolismo , Transdução de Sinais/genética , Transexualidade/genética , Alelos , Austrália , California , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Período Pós-Operatório , Período Pré-Operatório , Cirurgia de Readequação Sexual
15.
Sci Rep ; 8(1): 13263, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30185873

RESUMO

Peptidyl arginine deiminases (PADIs) are enzymes that change the charge of proteins through citrullination. We recently found Padi2 was expressed exclusively in fetal Sertoli cells. In this study, we analyzed the transcriptional regulation of Padi2 and the role of PADI2 in testicular development. We showed SOX9 positively regulated Padi2 transcription and FOXL2 antagonized it in TM3 cells, a model of Sertoli cells. The responsive region to SOX9 and FOXL2 was identified within the Padi2 sequence by reporter assay. In fetal testes from Sox9 knockout (AMH-Cre:Sox9flox/flox) mice, Padi2 expression was greatly reduced, indicating SOX9 regulates Padi2 in vivo. In vitro analysis using siRNA suggested PADI2 modified transcriptional regulation by SOX9. However, Padi2-/- XY mice were fertile and showed no apparent reproductive anomalies. Although, PADI2 is known as an epigenetic transcriptional regulator through H3 citrullination, no significant difference in H3 citrullination between wildtype and Padi2-/- XY gonads was observed. These results suggest Padi2 is a novel gene involved in testis development that is specifically expressed in Sertoli cells through the regulation by SOX9 and FOXL2 and PADI2 supports regulation of target genes by SOX9. Analysis of the Padi2-/- XY phenotype suggested a redundant factor compensated for PADI2 function in testicular development.


Assuntos
Desiminases de Arginina em Proteínas/biossíntese , Fatores de Transcrição SOX9/metabolismo , Células de Sertoli/metabolismo , Testículo/embriologia , Animais , Linhagem Celular , Proteína Forkhead Box L2/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Proteína-Arginina Desiminase do Tipo 2 , Desiminases de Arginina em Proteínas/genética , Desiminases de Arginina em Proteínas/metabolismo , Fatores de Transcrição SOX9/genética , Células de Sertoli/citologia , Testículo/metabolismo
16.
Cell Rep ; 24(5): 1330-1341, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30067986

RESUMO

Mammalian sex determination depends on a complex interplay of signals that promote the bipotential fetal gonad to develop as either a testis or an ovary, but the details are incompletely understood. Here, we investigated whether removal of the signaling molecule retinoic acid (RA) by the degradative enzyme CYP26B1 is necessary for proper development of somatic cells of the testes. Gonadal organ culture experiments suggested that RA promotes expression of some ovarian markers and suppresses expression of some testicular markers, acting downstream of Sox9. XY Cyp26b1-null embryos, in which endogenous RA is not degraded, develop mild ovotestes, but more important, steroidogenesis is impaired and the reproductive tract feminized. Experiments involving purified gonadal cells showed that these effects are independent of germ cells and suggest the direct involvement of the orphan nuclear receptor DAX1. Our results reveal that active removal of endogenous RA is required for normal testis development in the mouse.


Assuntos
Processos de Determinação Sexual , Testículo/metabolismo , Tretinoína/farmacologia , Animais , Células Cultivadas , Receptor Nuclear Órfão DAX-1/genética , Receptor Nuclear Órfão DAX-1/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ácido Retinoico 4 Hidroxilase/genética , Ácido Retinoico 4 Hidroxilase/metabolismo , Fatores de Transcrição SOX9/metabolismo , Testículo/efeitos dos fármacos , Testículo/embriologia
17.
Hum Mutat ; 39(12): 1861-1874, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30067310

RESUMO

Nuclear receptor subfamily 5 group A member 1/Steroidogenic factor 1 (NR5A1; SF-1; Ad4BP) mutations cause 46,XY disorders of sex development (DSD), with phenotypes ranging from developmentally mild (e.g., hypospadias) to severe (e.g., complete gonadal dysgenesis). The molecular mechanism underlying this spectrum is unclear. During sex determination, SF-1 regulates SOX9 (SRY [sex determining region Y]-box 9) expression. We hypothesized that SF-1 mutations in 46,XY DSD patients affect SOX9 expression via the Testis-specific Enhancer of Sox9 core element, TESCO. Our objective was to assess the ability of 20 SF-1 mutants found in 46,XY DSD patients to activate TESCO. Patient DNA was sequenced for SF-1 mutations and mutant SF-1 proteins were examined for transcriptional activity, protein expression, sub-cellular localization and in silico structural defects. Fifteen of the 20 mutants showed reduced SF-1 activation on TESCO, 11 with atypical sub-cellular localization. Fourteen SF-1 mutants were predicted in silico to alter DNA, ligand or cofactor interactions. Our study may implicate aberrant SF-1-mediated transcriptional regulation of SOX9 in 46,XY DSDs.


Assuntos
Transtorno 46,XY do Desenvolvimento Sexual/genética , Elementos Facilitadores Genéticos , Mutação , Fatores de Transcrição SOX9/genética , Fator Esteroidogênico 1/genética , Adolescente , Adulto , Criança , Pré-Escolar , Simulação por Computador , Regulação da Expressão Gênica , Células HEK293 , Humanos , Lactente , Recém-Nascido , Ligantes , Masculino , Ligação Proteica , Análise de Sequência de DNA/métodos , Fator Esteroidogênico 1/química , Fator Esteroidogênico 1/metabolismo
18.
Endocrinology ; 158(11): 3832-3843, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28938467

RESUMO

Male sex determination in mammals relies on sex determining region Y-mediated upregulation of sex determining region-box 9 (SOX9) expression in XY gonads, whereas Wnt family member (WNT)/R-spondin 1 signaling and forkhead box L2 (FOXL2) drive female sex determination in XX gonads. Fibroblast growth factor (FGF) 9 signaling ensures sustained SOX9 expression through repression of one of the ovarian pathways (WNT signaling), whereas the significance of FGF-mediated repression of the FOXL2 pathway has not been studied. Previously, we demonstrated that FGFR2 is the receptor for FGF9 in the XY gonad. Whether a specific isoform (FGFR2b or FGFR2c) is required was puzzling. Here, we show that FGFR2c is required for male sex determination. Initially, in developing mouse embryos at 12.5 to 13.5 days postcoitum (dpc), XY Fgfr2c-/- gonads appear as ovotestes, with SOX9 and FOXL2 expression predominantly localized to the posterior and anterior gonadal poles, respectively. However, by 15.5 dpc, XY Fgfr2c-/- gonads show complete male-to-female sex reversal, evident by the lack of SOX9 and ectopic expression of FOXL2 throughout the gonads. Furthermore, ablation of the Foxl2 gene leads to partial or complete rescue of gonadal sex reversal in XY Fgfr2c-/- mice. Together with previous findings, our data suggest that testis determination involves FGFR2c-mediated repression of both the WNT4- and FOXL2-driven ovarian-determining pathways.


Assuntos
Proteína Forkhead Box L2/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/fisiologia , Processos de Determinação Sexual/genética , Testículo/embriologia , Animais , Regulação para Baixo/genética , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ovário/embriologia , Ovário/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia , Testículo/metabolismo , Proteína Wnt4/genética
19.
Nucleic Acids Res ; 45(12): 7191-7211, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28472341

RESUMO

In mammalian embryonic gonads, SOX9 is required for the determination of Sertoli cells that orchestrate testis morphogenesis. To identify genetic networks directly regulated by SOX9, we combined analysis of SOX9-bound chromatin regions from murine and bovine foetal testes with sequencing of RNA samples from mouse testes lacking Sox9. We found that SOX9 controls a conserved genetic programme that involves most of the sex-determining genes. In foetal testes, SOX9 modulates both transcription and directly or indirectly sex-specific differential splicing of its target genes through binding to genomic regions with sequence motifs that are conserved among mammals and that we called 'Sertoli Cell Signature' (SCS). The SCS is characterized by a precise organization of binding motifs for the Sertoli cell reprogramming factors SOX9, GATA4 and DMRT1. As SOX9 biological role in mammalian gonads is to determine Sertoli cells, we correlated this genomic signature with the presence of SOX9 on chromatin in foetal testes, therefore equating this signature to a genomic bar code of the fate of foetal Sertoli cells. Starting from the hypothesis that nuclear factors that bind to genomic regions with SCS could functionally interact with SOX9, we identified TRIM28 as a new SOX9 partner in foetal testes.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Morfogênese/genética , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Fatores de Transcrição SOX9/genética , Células de Sertoli/metabolismo , Transcriptoma , Animais , Bovinos , Cromatina/química , Cromatina/metabolismo , Embrião de Mamíferos , Feminino , Feto , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo , Redes Reguladoras de Genes , Masculino , Camundongos , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteínas Repressoras/metabolismo , Fatores de Transcrição SOX9/metabolismo , Análise de Sequência de RNA , Células de Sertoli/citologia , Processos de Determinação Sexual , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína 28 com Motivo Tripartido
20.
Hum Mol Genet ; 24(23): 6699-710, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26362256

RESUMO

Patients with 46,XY gonadal dysgenesis (GD) exhibit genital anomalies, which range from hypospadias to complete male-to-female sex reversal. However, a molecular diagnosis is made in only 30% of cases. Heterozygous mutations in the human FGFR2 gene cause various craniosynostosis syndromes including Crouzon and Pfeiffer, but testicular defects were not reported. Here, we describe a patient whose features we would suggest represent a new FGFR2-related syndrome, craniosynostosis with XY male-to-female sex reversal or CSR. The craniosynostosis patient was chromosomally XY, but presented as a phenotypic female due to complete GD. DNA sequencing identified the FGFR2c heterozygous missense mutation, c.1025G>C (p.Cys342Ser). Substitution of Cys342 by Ser or other amino acids (Arg/Phe/Try/Tyr) has been previously reported in Crouzon and Pfeiffer syndrome. We show that the 'knock-in' Crouzon mouse model Fgfr2c(C342Y/C342Y) carrying a Cys342Tyr substitution displays XY gonadal sex reversal with variable expressivity. We also show that despite FGFR2c-Cys342Tyr being widely considered a gain-of-function mutation, Cys342Tyr substitution in the gonad leads to loss of function, as demonstrated by sex reversal in Fgfr2c(C342Y/-) mice carrying the knock-in allele on a null background. The rarity of our patient suggests the influence of modifier genes which exacerbated the testicular phenotype. Indeed, patient whole exome analysis revealed several potential modifiers expressed in Sertoli cells at the time of testis determination in mice. In summary, this study identifies the first FGFR2 mutation in a 46,XY GD patient. We conclude that, in certain rare genetic contexts, maintaining normal levels of FGFR2 signaling is important for human testis determination.


Assuntos
Craniossinostoses/genética , Disgenesia Gonadal 46 XY/genética , Mutação de Sentido Incorreto , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Adolescente , Animais , Craniossinostoses/metabolismo , Análise Mutacional de DNA , Modelos Animais de Doenças , Feminino , Técnicas de Introdução de Genes , Humanos , Masculino , Camundongos , Camundongos Mutantes , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...