Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 40(48): 9186-9209, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33097637

RESUMO

Neurons within the spinal cord are sensitive to environmental relations and can bring about a behavioral modification without input from the brain. For example, rats that have undergone a thoracic (T2) transection can learn to maintain a hind leg in a flexed position to minimize exposure to a noxious electrical stimulation (shock). Inactivating neurons within the spinal cord with lidocaine, or cutting communication between the spinal cord and the periphery (sciatic transection), eliminates the capacity to learn, which implies that it depends on spinal neurons. Here we show that these manipulations have no effect on the maintenance of the learned response, which implicates a peripheral process. EMG showed that learning augments the muscular response evoked by motoneuron output and that this effect survives a sciatic transection. Quantitative fluorescent imaging revealed that training brings about an increase in the area and intensity of ACh receptor labeling at the neuromuscular junction (NMJ). It is hypothesized that efferent motoneuron output, in conjunction with electrical stimulation of the tibialis anterior muscle, strengthens the connection at the NMJ in a Hebbian manner. Supporting this, paired stimulation of the efferent nerve and tibialis anterior generated an increase in flexion duration and augmented the evoked electrical response without input from the spinal cord. Evidence is presented that glutamatergic signaling contributes to plasticity at the NMJ. Labeling for vesicular glutamate transporter is evident at the motor endplate. Intramuscular application of an NMDAR antagonist blocked the acquisition/maintenance of the learned response and the strengthening of the evoked electrical response.SIGNIFICANCE STATEMENT The neuromuscular junction (NMJ) is designed to faithfully elicit a muscular contraction in response to neural input. From this perspective, encoding environmental relations (learning) and the maintenance of a behavioral modification over time (memory) are assumed to reflect only modifications upstream from the NMJ, within the CNS. The current results challenge this view. Rats were trained to maintain a hind leg in a flexed position to avoid noxious stimulation. As expected, treatments that inhibit activity within the CNS, or disrupt peripheral communication, prevented learning. These manipulations did not affect the maintenance of the acquired response. The results imply that a peripheral modification at the NMJ contributes to the maintenance of the learned response.


Assuntos
Comportamento Animal/fisiologia , Sistema Nervoso Central/fisiologia , Junção Neuromuscular/fisiologia , Animais , Condicionamento Clássico , Condicionamento Operante/fisiologia , Vias Eferentes/fisiologia , Eletromiografia , Membro Posterior/inervação , Membro Posterior/fisiologia , Aprendizagem/fisiologia , Masculino , Placa Motora/fisiologia , Neurônios Motores/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores Colinérgicos/fisiologia , Nervo Isquiático/fisiologia , Medula Espinal/fisiologia
2.
Curr Opin Neurobiol ; 47: 176-181, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29121585

RESUMO

During the initial stages of innervation of developing skeletal muscles, the terminal branches of axons from multiple motor neurons form neuromuscular junctions (NMJs) on a small region of each muscle fiber, the motor endplate. Subsequently, the number of axonal inputs at the endplate region is reduced so that, at maturity, each muscle fiber is innervated by the terminals of a single motor neuron. The Schwann cells associated with the axon terminals are involved in the removal of these synapses but do not select the axon that is ultimately retained on each fiber. Schwann cells perform this function by disconnecting terminal branches from the myofiber surface and by attacking them phagocytically. Here we discuss how this behavior is regulated and argue that such regulation is not unique to development of neuromuscular innervation but is also expressed in the response of the mature NMJ to various manipulations and pathologies.


Assuntos
Neurogênese/fisiologia , Junção Neuromuscular/embriologia , Células de Schwann/fisiologia , Sinapses/fisiologia , Animais , Humanos
3.
Genom Data ; 12: 52-53, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28367405

RESUMO

Synaptic vesicles (SVs) are presynaptic organelles that load and release small molecule neurotransmitters at chemical synapses. In addition to classic neurotransmitters, we have demonstrated that SVs isolated from the Peripheral Nervous Systems (PNS) of the electric organ of Torpedo californica, a model cholinergic synapse, and SVs isolated from the Central Nervous System (CNS) of Mus musculus (mouse) contain small ribonucleic acids (sRNAs; ≤ 50 nucleotides) (Scientific Reports, 5:1-14(14918) Li et al. (2015) [1]). Our previous publication provided the five most abundant sequences associated with the T. californica SVs, and the ten most abundant sequences associated with the mouse SVs, representing 59% and 39% of the total sRNA reads sequenced, respectively). We provide here a full repository of the SV sRNAs sequenced from T. californica and the mouse deposited in the NCBI as biosamples. Three data studies are included: SVs isolated from the electric organ of T. californica using standard techniques, SVs isolated from the electric organ of T. californica using standard techniques with an additional affinity purification step, and finally, SVs isolated from the CNS of mouse. The three biosamples are available at https://www.ncbi.nlm.nih.gov/biosample/ SRS1523467, SRS1523466, and SRS1523472 respectively.

4.
Sci Rep ; 5: 14918, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26446566

RESUMO

Synaptic vesicles (SVs) are neuronal presynaptic organelles that load and release neurotransmitter at chemical synapses. In addition to classic neurotransmitters, we have found that synaptic vesicles isolated from the electric organ of Torpedo californica, a model cholinergic synapse, contain small ribonucleic acids (sRNAs), primarily the 5' ends of transfer RNAs (tRNAs) termed tRNA fragments (trfRNAs). To test the evolutionary conservation of SV sRNAs we examined isolated SVs from the mouse central nervous system (CNS). We found abundant levels of sRNAs in mouse SVs, including trfRNAs and micro RNAs (miRNAs) known to be involved in transcriptional and translational regulation. This discovery suggests that, in addition to inducing changes in local dendritic excitability through the release of neurotransmitters, SVs may, through the release of specific trfRNAs and miRNAs, directly regulate local protein synthesis. We believe these findings have broad implications for the study of chemical synaptic transmission.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/metabolismo , RNA de Transferência/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Sequência de Bases , Evolução Biológica , Camundongos , MicroRNAs/química , MicroRNAs/genética , Dados de Sequência Molecular , Neurotransmissores/metabolismo , Conformação de Ácido Nucleico , Biossíntese de Proteínas , RNA de Transferência/química , RNA de Transferência/genética , Sinapses/química , Sinapses/metabolismo , Sinapses/ultraestrutura , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/química , Vesículas Sinápticas/ultraestrutura , Sinaptofisina/genética , Sinaptofisina/metabolismo , Torpedo/fisiologia , Transcrição Gênica , Proteínas Vesiculares de Transporte de Acetilcolina/genética , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo
5.
Physiol Rep ; 2(1): e00206, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24744885

RESUMO

The type of neurotransmitter secreted by a neuron is a product of the vesicular transporters present on its synaptic vesicle membranes and the available transmitters in the local cytosolic environment where the synaptic vesicles reside. Synaptic vesicles isolated from electroplaques of the marine ray, Torpedo californica, have served as model vesicles for cholinergic neurotransmission. Many lines of evidence support the idea that in addition to acetylcholine, additional neurotransmitters and/or neuromodulators are also released from cholinergic synapses. We identified the types of vesicular neurotransmitter transporters present at the electroplaque using immunoblot and immunofluoresence techniques with antibodies against the vesicle acetylcholine transporter (VAChT), the vesicular glutamate transporters (VGLUT1, 2, and 3), and the vesicular nucleotide transporter (VNUT). We found that VAChT, VNUT, VGLUT 1 and 2, but not 3 were present by immunoblot, and confirmed that the antibodies were specific to proteins of the axons and terminals of the electroplaque. We used a single-vesicle imaging technique to determine whether these neurotransmitter transporters were present on the same or different populations of synaptic vesicles. We found that greater than 85% of vesicles that labeled for VAChT colabeled with VGLUT1 or VGLUT2, and approximately 70% colabeled with VNUT. Based upon confidence intervals, at least 52% of cholinergic vesicles isolated are likely to contain all four transporters. The presence of multiple types of neurotransmitter transporters - and potentially neurotransmitters - in individual synaptic vesicles raises fundamental questions about the role of cotransmitter release and neurotransmitter synergy at cholinergic synapses.

6.
PLoS One ; 8(7): e69410, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23894473

RESUMO

Synaptic vesicles dock at active zones on the presynaptic plasma membrane of a neuron's axon terminals as a precondition for fusing with the membrane and releasing their neurotransmitter to mediate synaptic impulse transmission. Typically, docked vesicles are next to aggregates of plasma membrane-bound macromolecules called active zone material (AZM). Electron tomography on tissue sections from fixed and stained axon terminals of active and resting frog neuromuscular junctions has led to the conclusion that undocked vesicles are directed to and held at the docking sites by the successive formation of stable connections between vesicle membrane proteins and proteins in different classes of AZM macromolecules. Using the same nanometer scale 3D imaging technology on appropriately stained frog neuromuscular junctions, we found that ∼10% of a vesicle's luminal volume is occupied by a radial assembly of elongate macromolecules attached by narrow projections, nubs, to the vesicle membrane at ∼25 sites. The assembly's chiral, bilateral shape is nearly the same vesicle to vesicle, and nubs, at their sites of connection to the vesicle membrane, are linked to macromolecules that span the membrane. For docked vesicles, the orientation of the assembly's shape relative to the AZM and the presynaptic membrane is the same vesicle to vesicle, whereas for undocked vesicles it is not. The connection sites of most nubs on the membrane of docked vesicles are paired with the connection sites of the different classes of AZM macromolecules that regulate docking, and the membrane spanning macromolecules linked to these nubs are also attached to the AZM macromolecules. We conclude that the luminal assembly of macromolecules anchors in a particular arrangement vesicle membrane macromolecules, which contain the proteins that connect the vesicles to AZM macromolecules during docking. Undocked vesicles must move in a way that aligns this arrangement with the AZM macromolecules for docking to proceed.


Assuntos
Substâncias Macromoleculares/metabolismo , Junção Neuromuscular/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Anuros , Membrana Celular/metabolismo
7.
PLoS One ; 7(3): e33333, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22438915

RESUMO

The docking of synaptic vesicles at active zones on the presynaptic plasma membrane of axon terminals is essential for their fusion with the membrane and exocytosis of their neurotransmitter to mediate synaptic impulse transmission. Dense networks of macromolecules, called active zone material, (AZM) are attached to the presynaptic membrane next to docked vesicles. Electron tomography has shown that some AZM macromolecules are connected to docked vesicles, leading to the suggestion that AZM is somehow involved in the docking process. We used electron tomography on the simply arranged active zones at frog neuromuscular junctions to characterize the connections of AZM to docked synaptic vesicles and to search for the establishment of such connections during vesicle docking. We show that each docked vesicle is connected to 10-15 AZM macromolecules, which fall into four classes based on several criteria including their position relative to the presynaptic membrane. In activated axon terminals fixed during replacement of docked vesicles by previously undocked vesicles, undocked vesicles near vacated docking sites on the presynaptic membrane have connections to the same classes of AZM macromolecules that are connected to docked vesicles in resting terminals. The number of classes and the total number of macromolecules to which the undocked vesicles are connected are inversely proportional to the vesicles' distance from the presynaptic membrane. We conclude that vesicle movement toward and maintenance at docking sites on the presynaptic membrane are directed by an orderly succession of stable interactions between the vesicles and distinct classes of AZM macromolecules positioned at different distances from the membrane. Establishing the number, arrangement and sequence of association of AZM macromolecules involved in vesicle docking provides an anatomical basis for testing and extending concepts of docking mechanisms provided by biochemistry.


Assuntos
Vesículas Sinápticas/fisiologia , Animais , Sítios de Ligação , Simulação por Computador , Tomografia com Microscopia Eletrônica , Imageamento Tridimensional , Substâncias Macromoleculares/metabolismo , Modelos Neurológicos , Junção Neuromuscular/fisiologia , Junção Neuromuscular/ultraestrutura , Terminações Pré-Sinápticas/fisiologia , Terminações Pré-Sinápticas/ultraestrutura , Rana pipiens , Membranas Sinápticas/fisiologia , Membranas Sinápticas/ultraestrutura , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/ultraestrutura
9.
Structure ; 12(10): 1763-74, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15458626

RESUMO

Reconstructed volumes generated by tilt-image electron-microscope tomography offer the best spatial resolution currently available for studying cell structures in situ. Analysis is often accomplished by creating surface models that delineate grayscale contrast boundaries. Here, we introduce a specialized and convenient sequence of segmentation operations for making such models that greatly improves their reliability and spatial resolution as compared to current approaches, providing a basis for making accurate measurements. To assess the reliability of the surface models, we introduce a spatial uncertainty measurement based on grayscale gradient scale length. The model generation and measurement methods are validated by applying them to synthetic data, and their utility is demonstrated by using them to characterize macromolecular architecture of active zone material at the frog's neuromuscular junction.


Assuntos
Imageamento Tridimensional/métodos , Microscopia Eletrônica , Modelos Estruturais , Tomografia , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...