Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Nature ; 624(7992): 645-652, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38093014

RESUMO

People with diabetes feature a life-risking susceptibility to respiratory viral infection, including influenza and SARS-CoV-2 (ref. 1), whose mechanism remains unknown. In acquired and genetic mouse models of diabetes, induced with an acute pulmonary viral infection, we demonstrate that hyperglycaemia leads to impaired costimulatory molecule expression, antigen transport and T cell priming in distinct lung dendritic cell (DC) subsets, driving a defective antiviral adaptive immune response, delayed viral clearance and enhanced mortality. Mechanistically, hyperglycaemia induces an altered metabolic DC circuitry characterized by increased glucose-to-acetyl-CoA shunting and downstream histone acetylation, leading to global chromatin alterations. These, in turn, drive impaired expression of key DC effectors including central antigen presentation-related genes. Either glucose-lowering treatment or pharmacological modulation of histone acetylation rescues DC function and antiviral immunity. Collectively, we highlight a hyperglycaemia-driven metabolic-immune axis orchestrating DC dysfunction during pulmonary viral infection and identify metabolic checkpoints that may be therapeutically exploited in mitigating exacerbated disease in infected diabetics.


Assuntos
Células Dendríticas , Complicações do Diabetes , Diabetes Mellitus , Suscetibilidade a Doenças , Hiperglicemia , Pulmão , Viroses , Animais , Camundongos , Acetilcoenzima A/metabolismo , Acetilação , Cromatina/genética , Cromatina/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Complicações do Diabetes/imunologia , Complicações do Diabetes/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/imunologia , Diabetes Mellitus/metabolismo , Glucose/metabolismo , Histonas/metabolismo , Hiperglicemia/complicações , Hiperglicemia/imunologia , Hiperglicemia/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/virologia , Linfócitos T/imunologia , Viroses/complicações , Viroses/imunologia , Viroses/mortalidade , Vírus/imunologia , Modelos Animais de Doenças , Humanos
2.
Nat Immunol ; 24(4): 585-594, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36941399

RESUMO

Unlike other nucleotide oligomerization domain-like receptors, Nlrp10 lacks a canonical leucine-rich repeat domain, suggesting that it is incapable of signal sensing and inflammasome formation. Here we show that mouse Nlrp10 is expressed in distal colonic intestinal epithelial cells (IECs) and modulated by the intestinal microbiome. In vitro, Nlrp10 forms an Apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC)-dependent, m-3M3FBS-activated, polyinosinic:polycytidylic acid-modulated inflammasome driving interleukin-1ß and interleukin-18 secretion. In vivo, Nlrp10 signaling is dispensable during steady state but becomes functional during autoinflammation in antagonizing mucosal damage. Importantly, whole-body or conditional IEC Nlrp10 depletion leads to reduced IEC caspase-1 activation, coupled with enhanced susceptibility to dextran sodium sulfate-induced colitis, mediated by altered inflammatory and healing programs. Collectively, understanding Nlrp10 inflammasome-dependent and independent activity, regulation and possible human relevance might facilitate the development of new innate immune anti-inflammatory interventions.


Assuntos
Proteínas Reguladoras de Apoptose , Inflamassomos , Camundongos , Humanos , Animais , Inflamassomos/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Apoptose , Caspase 1/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Interleucina-1beta/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
3.
Front Oncol ; 12: 959133, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091130

RESUMO

We found that pediatric glioblastoma (PED-GBM) cell lines from diffuse intrinsic pontine glioma (DIPG) carrying the H3K27M mutation or from diffuse hemispheric glioma expressing the H3G34R mutation are sensitive to the combination of vorinostat (a histone deacetylase inhibitor) and PARP-1 inhibitors. The combined treatment increased the phosphorylation of eIF2α (P-eIF2α) relative to each drug alone and enhanced the decrease in cell survival. To explore the role played by increased P-eIF2α in modulating PED-GBM survival and response to treatments, we employed brain-penetrating inhibitors of P-eIF2α dephosphorylation: salubrinal and raphin-1. These drugs increased P-eIF2α, DNA damage, and cell death, similarly affecting the sensitivity of DIPG cells and derived neurospheres to PARP-1 inhibitors. Interestingly, these drugs also decreased the level of eIF2Bϵ (the catalytic subunit of eIF2B) and increased its phosphorylation, thereby enhancing the effect of increased P-eIF2α. Transient transfection with the S51D phosphomimetic eIF2α variant recapitulated the effect of salubrinal and raphin-1 on PED-GBM survival and sensitivity to PARP-1 inhibitors. Importantly, either salubrinal or raphin-1 dramatically increased the sensitivity of DIPG cells to radiation, the main treatment modality of PED-GBM. Finally, PED-GBM was more sensitive than normal human astrocytes to salubrinal, raphin-1, and the treatment combinations described herein. Our results indicate that combinations of histone deacetylase inhibitors and PARP-1 inhibitors should be evaluated for their toxicity and efficacy in PED-GBM patients and point to drugs that increase P-eIF2α or modulate its downstream effectors as a novel means of treating PED-GBM.

4.
Cell ; 185(18): 3307-3328.e19, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35987213

RESUMO

Non-nutritive sweeteners (NNS) are commonly integrated into human diet and presumed to be inert; however, animal studies suggest that they may impact the microbiome and downstream glycemic responses. We causally assessed NNS impacts in humans and their microbiomes in a randomized-controlled trial encompassing 120 healthy adults, administered saccharin, sucralose, aspartame, and stevia sachets for 2 weeks in doses lower than the acceptable daily intake, compared with controls receiving sachet-contained vehicle glucose or no supplement. As groups, each administered NNS distinctly altered stool and oral microbiome and plasma metabolome, whereas saccharin and sucralose significantly impaired glycemic responses. Importantly, gnotobiotic mice conventionalized with microbiomes from multiple top and bottom responders of each of the four NNS-supplemented groups featured glycemic responses largely reflecting those noted in respective human donors, which were preempted by distinct microbial signals, as exemplified by sucralose. Collectively, human NNS consumption may induce person-specific, microbiome-dependent glycemic alterations, necessitating future assessment of clinical implications.


Assuntos
Microbiota , Adoçantes não Calóricos , Adulto , Animais , Aspartame/farmacologia , Glicemia , Humanos , Camundongos , Adoçantes não Calóricos/análise , Adoçantes não Calóricos/farmacologia , Sacarina/farmacologia
5.
Cell ; 185(16): 2879-2898.e24, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35931020

RESUMO

Human gut commensals are increasingly suggested to impact non-communicable diseases, such as inflammatory bowel diseases (IBD), yet their targeted suppression remains a daunting unmet challenge. In four geographically distinct IBD cohorts (n = 537), we identify a clade of Klebsiella pneumoniae (Kp) strains, featuring a unique antibiotics resistance and mobilome signature, to be strongly associated with disease exacerbation and severity. Transfer of clinical IBD-associated Kp strains into colitis-prone, germ-free, and colonized mice enhances intestinal inflammation. Stepwise generation of a lytic five-phage combination, targeting sensitive and resistant IBD-associated Kp clade members through distinct mechanisms, enables effective Kp suppression in colitis-prone mice, driving an attenuated inflammation and disease severity. Proof-of-concept assessment of Kp-targeting phages in an artificial human gut and in healthy volunteers demonstrates gastric acid-dependent phage resilience, safety, and viability in the lower gut. Collectively, we demonstrate the feasibility of orally administered combination phage therapy in avoiding resistance, while effectively inhibiting non-communicable disease-contributing pathobionts.


Assuntos
Bacteriófagos , Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Animais , Colite/terapia , Humanos , Inflamação/terapia , Doenças Inflamatórias Intestinais/terapia , Klebsiella pneumoniae , Camundongos
6.
Mol Cell ; 82(14): 2696-2713.e9, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35716669

RESUMO

Cancer cells are highly heterogeneous at the transcriptional level and epigenetic state. Methods to study epigenetic heterogeneity are limited in throughput and information obtained per cell. Here, we adapted cytometry by time-of-flight (CyTOF) to analyze a wide panel of histone modifications in primary tumor-derived lines of diffused intrinsic pontine glioma (DIPG). DIPG is a lethal glioma, driven by a histone H3 lysine 27 mutation (H3-K27M). We identified two epigenetically distinct subpopulations in DIPG, reflecting inherent heterogeneity in expression of the mutant histone. These two subpopulations are robust across tumor lines derived from different patients and show differential proliferation capacity and expression of stem cell and differentiation markers. Moreover, we demonstrate the use of these high-dimensional data to elucidate potential interactions between histone modifications and epigenetic alterations during the cell cycle. Our work establishes new concepts for the analysis of epigenetic heterogeneity in cancer that could be applied to diverse biological systems.


Assuntos
Neoplasias do Tronco Encefálico , Glioma , Neoplasias do Tronco Encefálico/genética , Neoplasias do Tronco Encefálico/metabolismo , Neoplasias do Tronco Encefálico/patologia , Cromatina/genética , Epigênese Genética , Glioma/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Mutação
8.
Nature ; 600(7890): 713-719, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34880502

RESUMO

Cigarette smoking constitutes a leading global cause of morbidity and preventable death1, and most active smokers report a desire or recent attempt to quit2. Smoking-cessation-induced weight gain (SCWG; 4.5 kg reported to be gained on average per 6-12 months, >10 kg year-1 in 13% of those who stopped smoking3) constitutes a major obstacle to smoking abstinence4, even under stable5,6 or restricted7 caloric intake. Here we use a mouse model to demonstrate that smoking and cessation induce a dysbiotic state that is driven by an intestinal influx of cigarette-smoke-related metabolites. Microbiome depletion induced by treatment with antibiotics prevents SCWG. Conversely, fecal microbiome transplantation from mice previously exposed to cigarette smoke into germ-free mice naive to smoke exposure induces excessive weight gain across diets and mouse strains. Metabolically, microbiome-induced SCWG involves a concerted host and microbiome shunting of dietary choline to dimethylglycine driving increased gut energy harvest, coupled with the depletion of a cross-regulated weight-lowering metabolite, N-acetylglycine, and possibly by the effects of other differentially abundant cigarette-smoke-related metabolites. Dimethylglycine and N-acetylglycine may also modulate weight and associated adipose-tissue immunity under non-smoking conditions. Preliminary observations in a small cross-sectional human cohort support these findings, which calls for larger human trials to establish the relevance of this mechanism in active smokers. Collectively, we uncover a microbiome-dependent orchestration of SCWG that may be exploitable to improve smoking-cessation success and to correct metabolic perturbations even in non-smoking settings.


Assuntos
Microbioma Gastrointestinal , Abandono do Hábito de Fumar , Aumento de Peso , Animais , Estudos Transversais , Disbiose/etiologia , Disbiose/metabolismo , Disbiose/patologia , Camundongos , Modelos Animais , Fumar/metabolismo , Fumar/patologia
9.
Nat Med ; 26(12): 1899-1911, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33106666

RESUMO

Acute liver failure (ALF) is a fulminant complication of multiple etiologies, characterized by rapid hepatic destruction, multi-organ failure and mortality. ALF treatment is mainly limited to supportive care and liver transplantation. Here we utilize the acetaminophen (APAP) and thioacetamide (TAA) ALF models in characterizing 56,527 single-cell transcriptomes to define the mouse ALF cellular atlas. We demonstrate that unique, previously uncharacterized stellate cell, endothelial cell, Kupffer cell, monocyte and neutrophil subsets, and their intricate intercellular crosstalk, drive ALF. We unravel a common MYC-dependent transcriptional program orchestrating stellate, endothelial and Kupffer cell activation during ALF, which is regulated by the gut microbiome through Toll-like receptor (TLR) signaling. Pharmacological inhibition of MYC, upstream TLR signaling checkpoints or microbiome depletion suppress this cell-specific, MYC-dependent program, thereby attenuating ALF. In humans, we demonstrate upregulated hepatic MYC expression in ALF transplant recipients compared to healthy donors. Collectively we demonstrate that detailed cellular/genetic decoding may enable pathway-specific ALF therapeutic intervention.


Assuntos
Falência Hepática Aguda/genética , Microbiota/genética , Proteínas Proto-Oncogênicas c-myc/genética , Transcriptoma/efeitos dos fármacos , Acetaminofen/toxicidade , Animais , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Humanos , Células de Kupffer/efeitos dos fármacos , Células de Kupffer/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/patologia , Transplante de Fígado/efeitos adversos , Camundongos , Microbiota/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Análise de Célula Única , Tioacetamida/toxicidade , Receptores Toll-Like/genética
10.
Cell ; 182(6): 1441-1459.e21, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32888430

RESUMO

Throughout a 24-h period, the small intestine (SI) is exposed to diurnally varying food- and microbiome-derived antigenic burdens but maintains a strict immune homeostasis, which when perturbed in genetically susceptible individuals, may lead to Crohn disease. Herein, we demonstrate that dietary content and rhythmicity regulate the diurnally shifting SI epithelial cell (SIEC) transcriptional landscape through modulation of the SI microbiome. We exemplify this concept with SIEC major histocompatibility complex (MHC) class II, which is diurnally modulated by distinct mucosal-adherent SI commensals, while supporting downstream diurnal activity of intra-epithelial IL-10+ lymphocytes regulating the SI barrier function. Disruption of this diurnally regulated diet-microbiome-MHC class II-IL-10-epithelial barrier axis by circadian clock disarrangement, alterations in feeding time or content, or epithelial-specific MHC class II depletion leads to an extensive microbial product influx, driving Crohn-like enteritis. Collectively, we highlight nutritional features that modulate SI microbiome, immunity, and barrier function and identify dietary, epithelial, and immune checkpoints along this axis to be potentially exploitable in future Crohn disease interventions.


Assuntos
Doença de Crohn/microbiologia , Células Epiteliais/metabolismo , Microbioma Gastrointestinal , Antígenos de Histocompatibilidade Classe II/metabolismo , Intestino Delgado/imunologia , Intestino Delgado/microbiologia , Transcriptoma/genética , Animais , Antibacterianos/farmacologia , Relógios Circadianos/fisiologia , Doença de Crohn/imunologia , Doença de Crohn/metabolismo , Dieta , Células Epiteliais/citologia , Células Epiteliais/imunologia , Citometria de Fluxo , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Perfilação da Expressão Gênica , Antígenos de Histocompatibilidade Classe II/genética , Homeostase , Hibridização in Situ Fluorescente , Interleucina-10/metabolismo , Interleucina-10/farmacologia , Intestino Delgado/fisiologia , Linfócitos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Periodicidade , Linfócitos T/imunologia , Transcriptoma/fisiologia
11.
Gastroenterology ; 159(5): 1807-1823, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32653496

RESUMO

BACKGROUND & AIMS: The intestinal barrier protects intestinal cells from microbes and antigens in the lumen-breaches can alter the composition of the intestinal microbiota, the enteric immune system, and metabolism. We performed a screen to identify molecules that disrupt and support the intestinal epithelial barrier and tested their effects in mice. METHODS: We performed an imaging-based, quantitative, high-throughput screen (using CaCo-2 and T84 cells incubated with lipopolysaccharide; tumor necrosis factor; histamine; receptor antagonists; and libraries of secreted proteins, microbial metabolites, and drugs) to identify molecules that altered epithelial tight junction (TJ) and focal adhesion morphology. We then tested the effects of TJ stabilizers on these changes. Molecules we found to disrupt or stabilize TJs were administered mice with dextran sodium sulfate-induced colitis or Citrobacter rodentium-induced intestinal inflammation. Colon tissues were collected and analyzed by histology, fluorescence microscopy, and RNA sequencing. RESULTS: The screen identified numerous compounds that disrupted or stabilized (after disruption) TJs and monolayers of epithelial cells. We associated distinct morphologic alterations with changes in barrier function, and identified a variety of cytokines, metabolites, and drugs (including inhibitors of actomyosin contractility) that prevent disruption of TJs and restore TJ integrity. One of these disruptors (putrescine) disrupted TJ integrity in ex vivo mouse colon tissues; administration to mice exacerbated colon inflammation, increased gut permeability, reduced colon transepithelial electrical resistance, increased pattern recognition receptor ligands in mesenteric lymph nodes, and decreased colon length and survival times. Putrescine also increased intestine levels and fecal shedding of viable C rodentium, increased bacterial attachment to the colonic epithelium, and increased levels of inflammatory cytokines in colon tissues. Colonic epithelial cells from mice given putrescine increased expression of genes that regulate metal binding, oxidative stress, and cytoskeletal organization and contractility. Co-administration of taurine with putrescine blocked disruption of TJs and the exacerbated inflammation. CONCLUSIONS: We identified molecules that disrupt and stabilize intestinal epithelial TJs and barrier function and affect development of colon inflammation in mice. These agents might be developed for treatment of barrier intestinal impairment-associated and inflammatory disorders in patients, or avoided to prevent inflammation.


Assuntos
Colite/tratamento farmacológico , Colo/efeitos dos fármacos , Infecções por Enterobacteriaceae/tratamento farmacológico , Células Epiteliais/efeitos dos fármacos , Fármacos Gastrointestinais/farmacologia , Ensaios de Triagem em Larga Escala , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos , Animais , Células CACO-2 , Citrobacter rodentium/patogenicidade , Colite/induzido quimicamente , Colite/metabolismo , Colite/microbiologia , Colo/metabolismo , Colo/microbiologia , Colo/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Infecções por Enterobacteriaceae/metabolismo , Infecções por Enterobacteriaceae/microbiologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Microbioma Gastrointestinal , Interações Hospedeiro-Patógeno , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Masculino , Camundongos Endogâmicos C57BL , Permeabilidade , Putrescina/farmacologia , Taurina/farmacologia , Junções Íntimas/metabolismo , Junções Íntimas/microbiologia , Junções Íntimas/patologia
12.
Phys Med Biol ; 65(7): 075007, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32053802

RESUMO

Intravital imaging of brain vasculature through the intact cranium in vivo is based on the evolution of the fluorescence intensity and provides an ability to characterize various physiological processes in the natural context of cellular resolution. The involuntary motions of the examined subjects often limit in vivo non-invasive functional optical imaging. Conventional imaging diagnostic modalities encounter serious difficulties in correction of artificial motions, associated with fast high dynamics of the intensity values in the collected image sequences, when a common reference cannot be provided. In the current report, we introduce an alternative solution based on a time-space Fourier transform method so-called K-Omega. We demonstrate that the proposed approach is effective for image stabilization of fast dynamic image sequences and can be used autonomously without supervision and assignation of a reference image.


Assuntos
Artefatos , Encéfalo/diagnóstico por imagem , Análise de Fourier , Processamento de Imagem Assistida por Computador/métodos , Movimento , Imagem Óptica , Humanos , Neuroimagem , Fatores de Tempo
13.
Proc Natl Acad Sci U S A ; 116(42): 21012-21021, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31575743

RESUMO

Insecticides allow control of agricultural pests and disease vectors and are vital for global food security and health. The evolution of resistance to insecticides, such as organophosphates (OPs), is a serious and growing concern. OP resistance often involves sequestration or hydrolysis of OPs by carboxylesterases. Inhibiting carboxylesterases could, therefore, restore the effectiveness of OPs for which resistance has evolved. Here, we use covalent virtual screening to produce nano-/picomolar boronic acid inhibitors of the carboxylesterase αE7 from the agricultural pest Lucilia cuprina as well as a common Gly137Asp αE7 mutant that confers OP resistance. These inhibitors, with high selectivity against human acetylcholinesterase and low to no toxicity in human cells and in mice, act synergistically with the OPs diazinon and malathion to reduce the amount of OP required to kill L. cuprina by up to 16-fold and abolish resistance. The compounds exhibit broad utility in significantly potentiating another OP, chlorpyrifos, against the common pest, the peach-potato aphid (Myzus persicae). These compounds represent a solution to OP resistance as well as to environmental concerns regarding overuse of OPs, allowing significant reduction of use without compromising efficacy.


Assuntos
Resistência a Inseticidas/genética , Inseticidas/farmacologia , Acetilcolinesterase/genética , Animais , Afídeos/efeitos dos fármacos , Hidrolases de Éster Carboxílico/genética , Linhagem Celular , Diazinon/farmacologia , Feminino , Células HEK293 , Humanos , Malation/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Organofosfatos/farmacologia
14.
Nature ; 572(7770): 474-480, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31330533

RESUMO

Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disorder, in which the clinical manifestations may be influenced by genetic and unknown environmental factors. Here we show that ALS-prone Sod1 transgenic (Sod1-Tg) mice have a pre-symptomatic, vivarium-dependent dysbiosis and altered metabolite configuration, coupled with an exacerbated disease under germ-free conditions or after treatment with broad-spectrum antibiotics. We correlate eleven distinct commensal bacteria at our vivarium with the severity of ALS in mice, and by their individual supplementation into antibiotic-treated Sod1-Tg mice we demonstrate that Akkermansia muciniphila (AM) ameliorates whereas Ruminococcus torques and Parabacteroides distasonis exacerbate the symptoms of ALS. Furthermore, Sod1-Tg mice that are administered AM are found to accumulate AM-associated nicotinamide in the central nervous system, and systemic supplementation of nicotinamide improves motor symptoms and gene expression patterns in the spinal cord of Sod1-Tg mice. In humans, we identify distinct microbiome and metabolite configurations-including reduced levels of nicotinamide systemically and in the cerebrospinal fluid-in a small preliminary study that compares patients with ALS with household controls. We suggest that environmentally driven microbiome-brain interactions may modulate ALS in mice, and we call for similar investigations in the human form of the disease.


Assuntos
Esclerose Lateral Amiotrófica/microbiologia , Esclerose Lateral Amiotrófica/fisiopatologia , Microbioma Gastrointestinal/fisiologia , Niacinamida/metabolismo , Akkermansia , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Antibacterianos/farmacologia , Modelos Animais de Doenças , Disbiose , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Vida Livre de Germes , Humanos , Longevidade , Masculino , Camundongos , Camundongos Transgênicos , Niacinamida/biossíntese , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Taxa de Sobrevida , Simbiose/efeitos dos fármacos , Verrucomicrobia/metabolismo , Verrucomicrobia/fisiologia
15.
Sci Immunol ; 4(36)2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31201258

RESUMO

Cytokines maintain intestinal health, but precise intercellular communication networks remain poorly understood. Macrophages are immune sentinels of the intestinal tissue and are critical for gut homeostasis. Here, we show that in a murine inflammatory bowel disease (IBD) model based on macrophage-restricted interleukin-10 (IL-10) receptor deficiency (Cx3cr1Cre:Il10rafl/fl mice), proinflammatory mutant gut macrophages cause severe spontaneous colitis resembling the condition observed in children carrying IL-10R mutations. We establish macrophage-derived IL-23 as the driving factor of this pathology. Specifically, we report that Cx3cr1Cre:Il10rafl/fl:Il23afl/fl mice harboring macrophages deficient for both IL-10R and IL-23 are protected from colitis. By analyzing the epithelial response to proinflammatory macrophages, we provide evidence that T cells of colitic animals produce IL-22, which induces epithelial chemokine expression and detrimental neutrophil recruitment. Collectively, we define macrophage-specific contributions to the induction and pathogenesis of colitis, as manifested in mice harboring IL-10R deficiencies and human IBDs.


Assuntos
Colite/imunologia , Células Epiteliais/imunologia , Interleucina-23/imunologia , Interleucinas/imunologia , Macrófagos/imunologia , Receptores de Interleucina-10/imunologia , Animais , Colite/patologia , Intestinos/imunologia , Intestinos/patologia , Masculino , Camundongos , Neutrófilos/imunologia , Receptores de Interleucina-10/genética , Interleucina 22
16.
J Biomed Opt ; 24(6): 1-4, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31152505

RESUMO

Optical clearing agents (OCAs) and many chemicals are widely used in functional diagnosis of skin tissues. Numerous studies are associated with the transcutaneous diffusion of OCA in epidermal, dermal, and hypodermal tissues, which results in changing their optical properties. In addition, an objective approach that is suitable for screening the influence of utilized OCA, as well as various chemical agents, synthetics, and nanomaterials, on blood and lymph flows is highly desirable. In our study, a highly sensitive laser speckle imaging (LSI) system and fluorescent intravital microscopy (FIM) were used team-wise to inspect the acute skin vascular permeability reaction in mouse ear during the local application of OCA on the skin surface. Fluorescent contrast material administrated intravenously was used for quantitatively assessing the intensity of vascular permeability reaction and the strength of skin irritation. The obtained results suggest that a combined use of LSI and FIM is highly effective for monitoring the cutaneous vascular permeability reaction, with great potential for assessment of allergic reactions of skin in response to interactions with chemical substances.


Assuntos
Permeabilidade Capilar/fisiologia , Microscopia Intravital/métodos , Fluxometria por Laser-Doppler/métodos , Pele/irrigação sanguínea , Animais , Meios de Contraste/administração & dosagem , Diagnóstico por Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Camundongos
17.
J Am Assoc Lab Anim Sci ; 58(2): 201-207, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30651159

RESUMO

The precise identification of rodent Pasteurellaceae is known to be highly challenging. An unknown strain of Pasteurellaceae appeared and rapidly spread throughout our animal facilities. Standard microbiology, combined with biochemical analysis, suggested that the bacteria strain was Rodentibacter pneumotropicus or R. heylii. We submitted samples of the unknown bacteria and known isolates of R. pneumotropicus, R. heylii, and Muribacter muris, to 2 service laboratories that provide animal health monitoring. Results of microbiology tests performed by both laboratories, species-specific PCR analysis performed by one laboratory, and independent 16S rRNA gene sequencing yielded identical identification of the unknown bacteria as Pasteurellaceae (Pasteurella spp.) and not R. pneumotropicus or R. heylii. In contrast, the similarly intended PCR assay performed by the other laboratory identified the bacteria as R. heylii. Careful evaluation of all of the results led us to conclude that the correct identification of the bacteria is Pasteurellaceae. From our experience, we recommend that a combination of several methods should be used to achieve correct identification of rodent Pasteurellaceae. Specifically, we advise that all primer sets used should be disclosed when reporting PCR test results, including in health reports provided by service laboratories and animal vendors. Careful, correct, and informative health monitoring reports are most beneficial to animal researchers and caretakers who might encounter the presence and effects of rodent Pasteurellaceae.


Assuntos
DNA Bacteriano/genética , Pasteurellaceae/genética , Pasteurellaceae/isolamento & purificação , RNA Ribossômico 16S/genética , Roedores/microbiologia , Animais , Ciência dos Animais de Laboratório , Filogenia , Reação em Cadeia da Polimerase , Especificidade da Espécie
18.
Cell ; 174(6): 1388-1405.e21, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30193112

RESUMO

Empiric probiotics are commonly consumed by healthy individuals as means of life quality improvement and disease prevention. However, evidence of probiotic gut mucosal colonization efficacy remains sparse and controversial. We metagenomically characterized the murine and human mucosal-associated gastrointestinal microbiome and found it to only partially correlate with stool microbiome. A sequential invasive multi-omics measurement at baseline and during consumption of an 11-strain probiotic combination or placebo demonstrated that probiotics remain viable upon gastrointestinal passage. In colonized, but not germ-free mice, probiotics encountered a marked mucosal colonization resistance. In contrast, humans featured person-, region- and strain-specific mucosal colonization patterns, hallmarked by predictive baseline host and microbiome features, but indistinguishable by probiotics presence in stool. Consequently, probiotics induced a transient, individualized impact on mucosal community structure and gut transcriptome. Collectively, empiric probiotics supplementation may be limited in universally and persistently impacting the gut mucosa, meriting development of new personalized probiotic approaches.


Assuntos
Microbioma Gastrointestinal , Probióticos/administração & dosagem , Adolescente , Adulto , Idoso , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Fezes/microbiologia , Feminino , Mucosa Gástrica/microbiologia , Humanos , Mucosa Intestinal/microbiologia , Masculino , Metagenômica , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Efeito Placebo , Análise de Componente Principal , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Transcriptoma , Adulto Jovem
19.
Cell ; 174(6): 1406-1423.e16, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30193113

RESUMO

Probiotics are widely prescribed for prevention of antibiotics-associated dysbiosis and related adverse effects. However, probiotic impact on post-antibiotic reconstitution of the gut mucosal host-microbiome niche remains elusive. We invasively examined the effects of multi-strain probiotics or autologous fecal microbiome transplantation (aFMT) on post-antibiotic reconstitution of the murine and human mucosal microbiome niche. Contrary to homeostasis, antibiotic perturbation enhanced probiotics colonization in the human mucosa but only mildly improved colonization in mice. Compared to spontaneous post-antibiotic recovery, probiotics induced a markedly delayed and persistently incomplete indigenous stool/mucosal microbiome reconstitution and host transcriptome recovery toward homeostatic configuration, while aFMT induced a rapid and near-complete recovery within days of administration. In vitro, Lactobacillus-secreted soluble factors contributed to probiotics-induced microbiome inhibition. Collectively, potential post-antibiotic probiotic benefits may be offset by a compromised gut mucosal recovery, highlighting a need of developing aFMT or personalized probiotic approaches achieving mucosal protection without compromising microbiome recolonization in the antibiotics-perturbed host.


Assuntos
Antibacterianos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Probióticos/administração & dosagem , Adolescente , Adulto , Idoso , Animais , Transplante de Microbiota Fecal , Fezes/microbiologia , Feminino , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Lactobacillus/efeitos dos fármacos , Lactobacillus/genética , Lactobacillus/isolamento & purificação , Lactococcus/genética , Lactococcus/isolamento & purificação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Adulto Jovem
20.
Tomography ; 4(1): 4-13, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30042983

RESUMO

Inflammatory bowel disease (IBD) is characterized by a chronic flaring inflammation of the gastrointestinal tract. To determine disease activity, the inflammatory state of the colon should be assessed. Endoscopy in patients with IBD aids visualization of mucosal inflammation. However, because the mucosa is fragile, there is a significant risk of perforation. In addition, the technique is based on grading of the entire colon, which is highly operator-dependent. An improved, noninvasive, objective magnetic resonance imaging (MRI) technique will effectively assess pathologies in the small intestinal mucosa, more specifically, along the colon, and the bowel wall and surrounding structures. Here, dextran sodium sulfate polymer induced acute colitis in mice that was subsequently characterized by multisection magnetic resonance colonography. This study aimed to develop a noninvasive, objective, quantitative MRI technique for detecting mucosal inflammation in a dextran sodium sulfate-induced colitis mouse model. MRI results were correlated with endoscopic and histopathological evaluations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...