Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncotarget ; 8(2): 2916-2935, 2017 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-27935866

RESUMO

The tumor suppressor gene HIC1 (Hypermethylated In Cancer 1) encodes a transcriptional repressor mediating the p53-dependent apoptotic response to irreparable DNA double-strand breaks (DSBs) through direct transcriptional repression of SIRT1. HIC1 is also essential for DSB repair as silencing of endogenous HIC1 in BJ-hTERT fibroblasts significantly delays DNA repair in functional Comet assays. HIC1 SUMOylation favours its interaction with MTA1, a component of NuRD complexes. In contrast with irreparable DSBs induced by 16-hours of etoposide treatment, we show that repairable DSBs induced by 1 h etoposide treatment do not increase HIC1 SUMOylation or its interaction with MTA1. Furthermore, HIC1 SUMOylation is dispensable for DNA repair since the non-SUMOylatable E316A mutant is as efficient as wt HIC1 in Comet assays. Upon induction of irreparable DSBs, the ATM-mediated increase of HIC1 SUMOylation is independent of its effector kinase Chk2. Moreover, irreparable DSBs strongly increase both the interaction of HIC1 with MTA1 and MTA3 and their binding to the SIRT1 promoter. To characterize the molecular mechanisms sustained by this increased repression potential, we established global expression profiles of BJ-hTERT fibroblasts transfected with HIC1-siRNA or control siRNA and treated or not with etoposide. We identified 475 genes potentially repressed by HIC1 with cell death and cell cycle as the main cellular functions identified by pathway analysis. Among them, CXCL12, EPHA4, TGFßR3 and TRIB2, also known as MTA1 target-genes, were validated by qRT-PCR analyses. Thus, our data demonstrate that HIC1 SUMOylation is important for the transcriptional response to non-repairable DSBs but dispensable for DNA repair.


Assuntos
Apoptose/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Fatores de Transcrição Kruppel-Like/metabolismo , Antineoplásicos/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular Tumoral , Quinase do Ponto de Checagem 2/metabolismo , Etoposídeo/farmacologia , Histona Desacetilases/metabolismo , Humanos , Modelos Moleculares , Neoplasias/genética , Neoplasias/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Repressoras/metabolismo , Sirtuína 1/genética , Sumoilação , Transativadores , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
2.
Cell Mol Neurobiol ; 35(3): 377-387, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25392236

RESUMO

Multiple sclerosis is a chronic disease of the central nervous system characterized by an autoimmune inflammatory reaction that leads to axonal demyelination and tissue damage. Glucocorticoids, such as prednisolone, are effective in the treatment of multiple sclerosis in large part due to their ability to inhibit pro-inflammatory pathways (e.g., NFκB). However, despite their effectiveness, long-term treatment is limited by adverse side effects. VBP15 is a recently described compound synthesized based on the lazeroid steroidal backbone that shows activity in acute and chronic inflammatory conditions, yet displays a much-reduced side effect profile compared to traditional glucocorticoids. The purpose of this study was to determine the effectiveness of VBP15 in inhibiting inflammation and disease progression in experimental autoimmune encephalomyelitis (EAE), a widely used mouse model of multiple sclerosis. Our data show that VBP15 is effective at reducing both disease onset and severity. In parallel studies, we observed that VBP15 was able to inhibit the production of NFκB-regulated pro-inflammatory transcripts in human macrophages. Furthermore, treatment with prednisolone-but not VBP15-increased expression of genes associated with bone loss and muscle atrophy, suggesting lack of side effects of VBP15. These findings suggest that VBP15 may represent a potentially safer alternative to traditional glucocorticoids in the treatment of multiple sclerosis and other inflammatory diseases.


Assuntos
Anti-Inflamatórios/uso terapêutico , Encefalomielite Autoimune Experimental/tratamento farmacológico , Pregnadienodiois/uso terapêutico , Índice de Gravidade de Doença , Animais , Anti-Inflamatórios/farmacologia , Células Cultivadas , Relação Dose-Resposta a Droga , Encefalomielite Autoimune Experimental/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Monócitos/patologia , Pregnadienodiois/farmacologia , Gravidez , Resultado do Tratamento
3.
Pediatr Res ; 69(6): 538-43, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21297524

RESUMO

Genome-wide association studies (GWASs) have identified polymorphic loci associated with coronary artery disease (CAD) risk factors (i.e. serum lipids) in adult populations (42-69 y). We hypothesized that younger populations would show a greater relative genetic component due to fewer confounding variables. We examined the influence of 20 GWAS loci associated with serum lipids and insulin metabolism, in a university student cohort (n = 548; mean age = 24 y), and replicated statistically associated results in a second study cohort of primary school students (n = 810, mean age = 11.5 y). Nineteen loci showed no relationship with studied risk factors in young adults. However, the ancestral allele of the rs646776 (SORT1) locus was strongly associated with increased LDL (C) in young adults [TT: 97.6 ± 1.0 mg/dL (n = 345) versus CT/CC: 87.3 ± 1.0 mg/dL (n = 203); p = 3 × 10(x6)] and children [TT: 94.0 ± 1.3 mg/dL (n = 551) versus CT/CC: 84.7 ± 1.4 mg/dL (n = 259); p = 4 × 10(x6)]. This locus is responsible for 3.6% of population variance in young adults and 2.5% of population variance in children. The effect size of the SORT1 locus is considerably higher in young populations (2.5-4.1%) compared with older subjects (1%).


Assuntos
LDL-Colesterol/genética , Cromossomos Humanos Par 1/genética , Doença da Artéria Coronariana/genética , Estudo de Associação Genômica Ampla , Adulto , Criança , Diabetes Mellitus Tipo 2/genética , Exercício Físico , Feminino , Genótipo , Humanos , Insulina/metabolismo , Lipídeos/sangue , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Adulto Jovem
4.
Obesity (Silver Spring) ; 19(3): 662-6, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20725061

RESUMO

Recently, a genome-wide association study (GWAS) that identified eight single-nucleotide polymorphisms (SNPs) associated with BMI highlighted a possible neuronal influence on the development of obesity. We hypothesized these SNPs would govern the response of BMI and subcutaneous fat to resistance training in young individuals (age = 24 years). We genotyped the eight GWAS-identified SNPs in the article by Willer et al. in a cohort (n = 796) that undertook a 12-week resistance-training program. Females with a copy of the rare allele (C) for rs17782313 (MC4R) had significantly higher BMIs ( CC/CT: n = 174; 24.70 ± 0.33 kg/m², TT: n = 278; 23.41 ± 0.26 kg/m², P = 0.002), and the SNP explained 1.9% of overall variation in BMI. Males with a copy of the rare allele (T) for rs6548238 (TMEM18) had lower amounts of subcutaneous fat pretraining (CT/TT: n = 65; 156,534 ± 7,415 mm³, CC: n = 136; 177,825 ± 5,139 mm³, P = 0.019) and males with a copy of the rare allele (A) for rs9939609 (FTO) lost a significant amount of subcutaneous fat with exercise ( AT/AA: n = 83; -798.35 ± 2,624.30 mm³, TT: n = 47; 9,435.23 ± 3,494.44 mm³, P = 0.021). Females with a copy of the G allele for a missense variant in the SH2B1 (rs7498665) was associated with less change of subcutaneous fat volume with exercise ( AG/GG: n = 191; 9,813 ± 2,250 mm³ vs. AA: n = 126; 770 ± 2,772 mm³; P = 0.011). These data support the original finding that there is an association between measures of obesity and a variant near the MC4R gene and extends these results to a younger population and implicates FTO, TMEM18, and SH2B1 polymorphisms in subcutaneous fat regulation.


Assuntos
Índice de Massa Corporal , Exercício Físico/fisiologia , Obesidade/genética , Polimorfismo de Nucleotídeo Único , Receptor Tipo 4 de Melanocortina/genética , Treinamento Resistido , Gordura Subcutânea/metabolismo , Adolescente , Adulto , Alelos , Feminino , Estudo de Associação Genômica Ampla/métodos , Genótipo , Humanos , Masculino , Obesidade/epidemiologia , Obesidade/metabolismo , Fatores Sexuais , Adulto Jovem
5.
Hum Genet ; 129(2): 129-39, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21061022

RESUMO

Converging lines of evidence suggest that AKT1 is a major mediator of the responses to insulin,insulin-like growth factor 1 (IGF1), and glucose. AKT1 also plays a key role in the regulation of both muscle cell hypertrophy and atrophy. We hypothesized that AKT1 variants may play a role in the endophenotypes that makeup metabolic syndrome. We studied a 12-kb region including the first exon of the AKT1 gene for association with metabolic syndrome-related phenotypes in four study populations [FAMUSS cohort (n = 574; age 23.7 ± 5.7 years), Strong Heart Study (SHS) (n = 2,134; age 55.5 ± 7.9 years), Dynamics of Health, Aging and Body Composition (Health ABC) (n = 3,075; age 73.6 ± 2.9 years), and Studies of a Targeted Risk Reduction Intervention through Defined Exercise (STRRIDE)(n = 175; age 40­65 years)]. We identified a three SNP haplotype that we call H1, which represents the ancestral alleles eles at the three loci and H2, which represents the derived alleles at the three loci. In young adult European Americans (FAMUSS), H1 was associated with higher fasting glucose levels in females. In middle age Native Americans (SHS), H1 carriers showed higher fasting insulin and HOMA in males, and higher BMI in females. Inolder African-American and European American subjects(Health ABC) H1 carriers showed a higher incidence of metabolic syndrome. Homozygotes for the H1 haplotype showed about twice the risk of metabolic syndrome in both males and females (p < 0.001). In middle-aged European Americans with insulin resistance (STRRIDE) studied by intravenous glucose tolerance test (IVGTT), H1 carriers showed increased insulin resistance due to the Sg component (p = 0.021). The 12-kb haplotype is a risk factor for metabolic syndrome and insulin resistance that needs to be explored in further populations.


Assuntos
Síndrome Metabólica/genética , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas c-akt/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Feminino , Humanos , Resistência à Insulina , Masculino , Síndrome Metabólica/etnologia , Pessoa de Meia-Idade , Adulto Jovem
6.
J Appl Physiol (1985) ; 109(6): 1779-85, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20947712

RESUMO

Baseline muscle size and muscle adaptation to exercise are traits with high variability across individuals. Recent research has implicated several chemokines and their receptors in the pathogenesis of many conditions that are influenced by inflammatory processes, including muscle damage and repair. One specific chemokine, chemokine (C-C motif) ligand 2 (CCL2), is expressed by macrophages and muscle satellite cells, increases expression dramatically following muscle damage, and increases expression further with repeated bouts of exercise, suggesting that CCL2 plays a key role in muscle adaptation. The present study hypothesizes that genetic variations in CCL2 and its receptor (CCR2) may help explain muscle trait variability. College-aged subjects [n = 874, Functional Single-Nucleotide Polymorphisms Associated With Muscle Size and Strength (FAMUSS) cohort] underwent a 12-wk supervised strength-training program for the upper arm muscles. Muscle size (via MR imaging) and elbow flexion strength (1 repetition maximum and isometric) measurements were taken before and after training. The study participants were then genotyped for 11 genetic variants in CCL2 and five variants in CCR2. Variants in the CCL2 and CCR2 genes show strong associations with several pretraining muscle strength traits, indicating that inflammatory genes in skeletal muscle contribute to the polygenic system that determines muscle phenotypes. These associations extend across both sexes, and several of these genetic variants have been shown to influence gene regulation.


Assuntos
Quimiocina CCL2/genética , Contração Isométrica/genética , Força Muscular/genética , Músculo Esquelético/metabolismo , Polimorfismo de Nucleotídeo Único , Receptores CCR2/genética , Treinamento Resistido , Adaptação Fisiológica , Adolescente , Adulto , Fenômenos Biomecânicos , Quimiocina CCL2/metabolismo , Distribuição de Qui-Quadrado , Feminino , Frequência do Gene , Genótipo , Humanos , Desequilíbrio de Ligação , Imageamento por Ressonância Magnética , Masculino , Músculo Esquelético/anatomia & histologia , Fenótipo , Receptores CCR2/metabolismo , Fatores de Tempo , Torque , Estados Unidos , Extremidade Superior , Adulto Jovem
7.
Hum Genet ; 128(6): 635-45, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20872231

RESUMO

A small 12-kb haplotype upstream of the AKT1 gene has been found to be associated with insulin resistance phenotypes. We sought to define the functional consequences of the three component polymorphic loci (rs1130214, rs10141867, rs33925946) on AKT1 and the upstream ZBTB42 gene. 5' RACE analysis of AKT1 transcripts in human skeletal muscle biopsies showed the predominant promoter to be 2.5 kb upstream of exon 2, and distinct from those promoters previously reported in rat. We then studied the effect of each of the three haplotype polymorphisms in transcriptional reporter assays in muscle, bone, and fat cell culture models, and found that each modulated enhancer and repressor activity are in a cell-specific and differentiation-specific manner. Our results in promoter assays are consistent with the human phenotype data; we found an anabolic effect on muscle and bone with increased mRNA expression of AKT1, and catabolic effect on fat with decreased expression. To test the hypothesis that rs10141867 affects transcription levels of the novel zinc finger protein ZBTB42 in vivo, we developed the allele-specific expression assay using Taqman technology to test for allelic differences within heterozygotes. The allele containing the derived polymorphism (haplotype H2) showed a 1.75-fold increase in expression in human skeletal muscle. Our data show a particularly complex effect of the component polymorphisms of a single haplotype on cells and tissues, suggesting that the coordination of different tissue-specific effects may have driven selection for the H2 haplotype. In light of the recent abundance of SNP association studies, our approach can serve as a method for exploring the biological function of polymorphisms that show significant genotype/phenotype associations.


Assuntos
Glucose/metabolismo , Síndrome Metabólica/genética , Proteínas Proto-Oncogênicas c-akt/genética , Sequência de Bases , Sequência Conservada , Técnicas Genéticas , Haplótipos , Homeostase , Humanos , Dados de Sequência Molecular , Músculo Esquelético
8.
J Cell Biochem ; 107(6): 1073-82, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19492344

RESUMO

A classic morphogen, bone morphogenetic protein 2 (BMP2) regulates the differentiation of pluripotent mesenchymal cells. High BMP2 levels promote osteogenesis or chondrogenesis and low levels promote adipogenesis. BMP2 inhibits myogenesis. Thus, BMP2 synthesis is tightly controlled. Several hundred nucleotides within the 3' untranslated regions of BMP2 genes are conserved from mammals to fishes indicating that the region is under stringent selective pressure. Our analyses indicate that this region controls BMP2 synthesis by post-transcriptional mechanisms. A common A to C single nucleotide polymorphism (SNP) in the BMP2 gene (rs15705, +A1123C) disrupts a putative post-transcriptional regulatory motif within the human ultra-conserved sequence. In vitro studies indicate that RNAs bearing the A or C alleles have different protein binding characteristics in extracts from mesenchymal cells. Reporter genes with the C allele of the ultra-conserved sequence were differentially expressed in mesenchymal cells. Finally, we analyzed MRI data from the upper arm of 517 healthy individuals aged 18-41 years. Individuals with the C/C genotype were associated with lower baseline subcutaneous fat volumes (P = 0.0030) and an increased gain in skeletal muscle volume (P = 0.0060) following resistance training in a cohort of young males. The rs15705 SNP explained 2-4% of inter-individual variability in the measured parameters. The rs15705 variant is one of the first genetic markers that may be exploited to facilitate early diagnosis, treatment, and/or prevention of diseases associated with poor fitness. Furthermore, understanding the mechanisms by which regulatory polymorphisms influence BMP2 synthesis will reveal novel pharmaceutical targets for these disabling conditions.


Assuntos
Tecido Adiposo/crescimento & desenvolvimento , Proteína Morfogenética Óssea 2/genética , Músculo Esquelético/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único , Sequências Reguladoras de Ácido Nucleico/genética , Tecido Adiposo/fisiologia , Adolescente , Adulto , Animais , Linhagem Celular , Feminino , Genótipo , Humanos , Masculino , Camundongos , Músculo Esquelético/fisiologia , Aptidão Física , Treinamento Resistido , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...