Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 12(12): e1006109, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27992883

RESUMO

Type IV pilus (T4P) systems are complex molecular machines that polymerize major pilin proteins into thin filaments displayed on bacterial surfaces. Pilus functions require rapid extension and depolymerization of the pilus, powered by the assembly and retraction ATPases, respectively. A set of low abundance minor pilins influences pilus dynamics by unknown mechanisms. The Vibrio cholerae toxin-coregulated pilus (TCP) is among the simplest of the T4P systems, having a single minor pilin TcpB and lacking a retraction ATPase. Here we show that TcpB, like its homolog CofB, initiates pilus assembly. TcpB co-localizes with the pili but at extremely low levels, equivalent to one subunit per pilus. We used a micropillars assay to demonstrate that TCP are retractile despite the absence of a retraction ATPase, and that retraction relies on TcpB, as a V. cholerae tcpB Glu5Val mutant is fully piliated but does not induce micropillars movements. This mutant is impaired in TCP-mediated autoagglutination and TcpF secretion, consistent with retraction being required for these functions. We propose that TcpB initiates pilus retraction by incorporating into the growing pilus in a Glu5-dependent manner, which stalls assembly and triggers processive disassembly. These results provide a framework for understanding filament dynamics in more complex T4P systems and the closely related Type II secretion system.


Assuntos
Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/metabolismo , Vibrio cholerae/metabolismo , Fímbrias Bacterianas/ultraestrutura , Immunoblotting , Imuno-Histoquímica , Microscopia Eletrônica de Transmissão , Vibrio cholerae/ultraestrutura
2.
J Biol Chem ; 290(43): 25805-18, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26324721

RESUMO

Type IV pili are extracellular polymers of the major pilin subunit. These subunits are held together in the pilus filament by hydrophobic interactions among their N-terminal α-helices, which also anchor the pilin subunits in the inner membrane prior to pilus assembly. Type IV pilus assembly involves a conserved group of proteins that span the envelope of Gram-negative bacteria. Among these is a set of minor pilins, so named because they share their hydrophobic N-terminal polymerization/membrane anchor segment with the major pilins but are much less abundant. Minor pilins influence pilus assembly and retraction, but their precise functions are not well defined. The Type IV pilus systems of enterotoxigenic Escherichia coli and Vibrio cholerae are among the simplest of Type IV pilus systems and possess only a single minor pilin. Here we show that the enterotoxigenic E. coli minor pilins CofB and LngB are required for assembly of their respective Type IV pili, CFA/III and Longus. Low levels of the minor pilins are optimal for pilus assembly, and CofB can be detected in the pilus fraction. We solved the 2.0 Å crystal structure of N-terminally truncated CofB, revealing a pilin-like protein with an extended C-terminal region composed of two discrete domains connected by flexible linkers. The C-terminal region is required for CofB to initiate pilus assembly. We propose a model for CofB-initiated pilus assembly with implications for understanding filament growth in more complex Type IV pilus systems as well as the related Type II secretion system.


Assuntos
Escherichia coli Enterotoxigênica/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Fímbrias/química , Fímbrias Bacterianas/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Proteínas de Escherichia coli/metabolismo , Proteínas de Fímbrias/metabolismo , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA