Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(36): 19691-19706, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37638886

RESUMO

Chemical modifications are necessary to ensure the metabolic stability and efficacy of oligonucleotide-based therapeutics. Here, we describe analyses of the α-(l)-threofuranosyl nucleic acid (TNA) modification, which has a shorter 3'-2' internucleotide linkage than the natural DNA and RNA, in the context of small interfering RNAs (siRNAs). The TNA modification enhanced nuclease resistance more than 2'-O-methyl or 2'-fluoro ribose modifications. TNA-containing siRNAs were prepared as triantennary N-acetylgalactosamine conjugates and were tested in cultured cells and mice. With the exceptions of position 2 of the antisense strand and position 11 of the sense strand, the TNA modification did not inhibit the activity of the RNA interference machinery. In a rat toxicology study, TNA placed at position 7 of the antisense strand of the siRNA mitigated off-target effects, likely due to the decrease in the thermodynamic binding affinity relative to the 2'-O-methyl residue. Analysis of the crystal structure of an RNA octamer with a single TNA on each strand showed that the tetrose sugar adopts a C4'-exo pucker. Computational models of siRNA antisense strands containing TNA bound to Argonaute 2 suggest that TNA is well accommodated in the region kinked by the enzyme. The combined data indicate that the TNA nucleotides are promising modifications expected to increase the potency, duration of action, and safety of siRNAs.


Assuntos
Ácidos Nucleicos , Animais , Camundongos , Ratos , RNA Interferente Pequeno , Nucleotídeos , Interferência de RNA , Acetilgalactosamina
2.
Nucleic Acids Res ; 51(8): 3754-3769, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37014002

RESUMO

The N-(2-deoxy-d-erythro-pentofuranosyl)-urea DNA lesion forms following hydrolytic fragmentation of cis-5R,6S- and trans-5R,6R-dihydroxy-5,6-dihydrothymidine (thymine glycol, Tg) or from oxidation of 7,8-dihydro-8-oxo-deoxyguanosine (8-oxodG) and subsequent hydrolysis. It interconverts between α and ß deoxyribose anomers. Synthetic oligodeoxynucleotides containing this adduct are efficiently incised by unedited (K242) and edited (R242) forms of the hNEIL1 glycosylase. The structure of a complex between the active site unedited mutant CΔ100 P2G hNEIL1 (K242) glycosylase and double-stranded (ds) DNA containing a urea lesion reveals a pre-cleavage intermediate, in which the Gly2 N-terminal amine forms a conjugate with the deoxyribose C1' of the lesion, with the urea moiety remaining intact. This structure supports a proposed catalytic mechanism in which Glu3-mediated protonation of O4' facilitates attack at deoxyribose C1'. The deoxyribose is in the ring-opened configuration with the O4' oxygen protonated. The electron density of Lys242 suggests the 'residue 242-in conformation' associated with catalysis. This complex likely arises because the proton transfer steps involving Glu6 and Lys242 are hindered due to Glu6-mediated H-bonding with the Gly2 and the urea lesion. Consistent with crystallographic data, biochemical analyses show that the CΔ100 P2G hNEIL1 (K242) glycosylase exhibits a residual activity against urea-containing dsDNA.


Assuntos
DNA Glicosilases , Reparo do DNA , Desoxirribose , Ureia , Desoxirribose/química , DNA/química , Dano ao DNA , DNA Glicosilases/metabolismo , Humanos
3.
Org Lett ; 25(6): 901-906, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36734846

RESUMO

We report the synthesis of piperidino nucleoside phosphoramidates functionalized with uracil, cytosine, guanine, and adenine and their incorporation into oligomers. High-performance liquid chromatography analyses demonstrated that a phosphorodiamidate piperidino oligomer (PPO) is more lipophilic than a phosphorodiamidate morpholino oligomer (PMO) of the same tetrameric sequence. A PMO containing piperidino residues formed duplexes with both DNA and RNA, and the PPO had higher stability at endosomolytic pH and higher hydrophobicity than the PMO.


Assuntos
Oligonucleotídeos Antissenso , Morfolinos
4.
Nucleic Acids Res ; 50(13): 7721-7738, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35819202

RESUMO

The ribose 2'-hydroxyl is the key chemical difference between RNA and DNA and primary source of their divergent structural and functional characteristics. Macromolecular X-ray diffraction experiments typically do not reveal the positions of hydrogen atoms. Thus, standard crystallography cannot determine 2'-OH orientation (H2'-C2'-O2'-HO2' torsion angle) and its potential roles in sculpting the RNA backbone and the expansive fold space. Here, we report the first neutron crystal structure of an RNA, the Escherichia coli rRNA Sarcin-Ricin Loop (SRL). 2'-OD orientations were established for all 27 residues and revealed O-D bonds pointing toward backbone (O3', 13 observations), nucleobase (11) or sugar (3). Most riboses in the SRL stem region show a 2'-OD backbone-orientation. GAGA-tetraloop riboses display a 2'-OD base-orientation. An atypical C2'-endo sugar pucker is strictly correlated with a 2'-OD sugar-orientation. Neutrons reveal the strong preference of the 2'-OH to donate in H-bonds and that 2'-OH orientation affects both backbone geometry and ribose pucker. We discuss 2'-OH and water molecule orientations in the SRL neutron structure and compare with results from a solution phase 10 µs MD simulation. We demonstrate that joint cryo-neutron/X-ray crystallography offers an all-in-one approach to determine the complete structural properties of RNA, i.e. geometry, conformation, protonation state and hydration structure.


Assuntos
RNA , Ribose/química , Água , Cristalografia por Raios X , Ligação de Hidrogênio , Nêutrons , Conformação de Ácido Nucleico , RNA/química , Água/química
5.
Org Lett ; 24(2): 525-530, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-34958225

RESUMO

Toward the goal of evaluation of carbocyclic ribonucleoside-containing oligonucleotide therapeutics, we developed convenient, scalable syntheses of all four carbocyclic ribonucleotide phosphoramidites and the uridine solid-support building block. Crystallographic analysis confirmed configuration and stereochemistry of these building blocks. Duplexes with carbocyclic RNA (car-RNA) modifications in one strand were less thermodynamically stable than duplexes with unmodified RNA. However, circular dichroism spectroscopy indicated that global conformations of the duplexes containing car-RNAs were similar to those in the unmodified duplexes.


Assuntos
Ribonucleotídeos
6.
Bioorg Med Chem Lett ; 56: 128479, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34838649

RESUMO

In this manuscript, we report a series of chiral 6-azaspiro[2.5]octanes and related spirocycles as highly potent and selective antagonists of the muscarinic acetylcholine receptor subtype 4 (mAChR4). Chiral separation and subsequent X-ray crystallographic analysis of early generation analogs revealed the R enantiomer to possess excellent human and rat M4 potency, and further structure-activity relationship (SAR) studies on this chiral scaffold led to the discovery of VU6015241 (compound 19). Compound 19 is characterized by high M4 potency and selectivity across multiple species, excellent aqueous solubility, and moderate brain exposure in rodents after intraperitoneal administration.


Assuntos
Antagonistas Muscarínicos/farmacologia , Receptor Muscarínico M4/antagonistas & inibidores , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Antagonistas Muscarínicos/síntese química , Antagonistas Muscarínicos/química , Receptor Muscarínico M4/metabolismo , Relação Estrutura-Atividade
7.
PLoS Comput Biol ; 17(11): e1009555, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34748541

RESUMO

The use of unnatural fluorogenic molecules widely expands the pallet of available genetically encoded fluorescent imaging tools through the design of fluorogen activating proteins (FAPs). While there is already a handful of such probes available, each of them went through laborious cycles of in vitro screening and selection. Computational modeling approaches are evolving incredibly fast right now and are demonstrating great results in many applications, including de novo protein design. It suggests that the easier task of fine-tuning the fluorogen-binding properties of an already functional protein in silico should be readily achievable. To test this hypothesis, we used Rosetta for computational ligand docking followed by protein binding pocket redesign to further improve the previously described FAP DiB1 that is capable of binding to a BODIPY-like dye M739. Despite an inaccurate initial docking of the chromophore, the incorporated mutations nevertheless improved multiple photophysical parameters as well as the overall performance of the tag. The designed protein, DiB-RM, shows higher brightness, localization precision, and apparent photostability in protein-PAINT super-resolution imaging compared to its parental variant DiB1. Moreover, DiB-RM can be cleaved to obtain an efficient split system with enhanced performance compared to a parental DiB-split system. The possible reasons for the inaccurate ligand binding pose prediction and its consequence on the outcome of the design experiment are further discussed.


Assuntos
Corantes Fluorescentes/química , Proteínas Luminescentes/química , Engenharia de Proteínas/métodos , Sequência de Aminoácidos , Compostos de Boro/química , Biologia Computacional , Cristalografia por Raios X , Desenho de Fármacos , Fluorescência , Células HEK293 , Humanos , Proteínas Luminescentes/genética , Microscopia de Fluorescência , Modelos Moleculares , Simulação de Acoplamento Molecular , Conformação Proteica , Engenharia de Proteínas/estatística & dados numéricos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Software
8.
Nucleic Acids Res ; 49(19): 10851-10867, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34648028

RESUMO

We recently reported that RNAi-mediated off-target effects are important drivers of the hepatotoxicity observed for a subset of GalNAc-siRNA conjugates in rodents, and that these findings could be mitigated by seed-pairing destabilization using a single GNA nucleotide placed within the seed region of the guide strand. Here, we report further investigation of the unique and poorly understood GNA/RNA cross-pairing behavior to better inform GNA-containing siRNA design. A reexamination of published GNA homoduplex crystal structures, along with a novel structure containing a single (S)-GNA-A residue in duplex RNA, indicated that GNA nucleotides universally adopt a rotated nucleobase orientation within all duplex contexts. Such an orientation strongly affects GNA-C and GNA-G but not GNA-A or GNA-T pairing in GNA/RNA heteroduplexes. Transposition of the hydrogen-bond donor/acceptor pairs using the novel (S)-GNA-isocytidine and -isoguanosine nucleotides could rescue productive base-pairing with the complementary G or C ribonucleotides, respectively. GalNAc-siRNAs containing these GNA isonucleotides showed an improved in vitro activity, a similar improvement in off-target profile, and maintained in vivo activity and guide strand liver levels more consistent with the parent siRNAs than those modified with isomeric GNA-C or -G, thereby expanding our toolbox for the design of siRNAs with minimized off-target activity.


Assuntos
Adenosina/química , Citidina/química , Glicóis/química , Guanosina/química , Oligorribonucleotídeos/química , RNA de Cadeia Dupla/química , RNA Interferente Pequeno/química , Acetilgalactosamina , Oxirredutases do Álcool/antagonistas & inibidores , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Animais , Pareamento de Bases , Células COS , Chlorocebus aethiops , Dimetilformamida/análogos & derivados , Dimetilformamida/química , Etilaminas/química , Feminino , Hepatócitos/citologia , Hepatócitos/metabolismo , Ligação de Hidrogênio , Camundongos , Camundongos Endogâmicos C57BL , Oligorribonucleotídeos/genética , Oligorribonucleotídeos/metabolismo , Compostos Organofosforados/química , Pré-Albumina/antagonistas & inibidores , Pré-Albumina/genética , Pré-Albumina/metabolismo , Cultura Primária de Células , Estabilidade de RNA , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
9.
Nucleic Acids Res ; 49(8): 4782-4792, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33872377

RESUMO

Even in high-quality X-ray crystal structures of oligonucleotides determined at a resolution of 1 Å or higher, the orientations of first-shell water molecules remain unclear. We used cryo neutron crystallography to gain insight into the H-bonding patterns of water molecules around the left-handed Z-DNA duplex [d(CGCGCG)]2. The neutron density visualized at 1.5 Å resolution for the first time allows us to pinpoint the orientations of most of the water molecules directly contacting the DNA and of many second-shell waters. In particular, H-bond acceptor and donor patterns for water participating in prominent hydration motifs inside the minor groove, on the convex surface or bridging nucleobase and phosphate oxygen atoms are finally revealed. Several water molecules display entirely unexpected orientations. For example, a water molecule located at H-bonding distance from O6 keto oxygen atoms of two adjacent guanines directs both its deuterium atoms away from the keto groups. Exocyclic amino groups of guanine (N2) and cytosine (N4) unexpectedly stabilize waters H-bonded to O2 keto oxygens from adjacent cytosines and O6 keto oxygens from adjacent guanines, respectively. Our structure offers the most detailed view to date of DNA solvation in the solid-state undistorted by metal ions or polyamines.


Assuntos
Cristalografia/métodos , DNA Forma Z/química , Água/química , Crioprotetores/química , Cristalografia por Raios X , DNA Forma Z/síntese química , Ligação de Hidrogênio , Modelos Moleculares , Difração de Nêutrons/métodos , Nêutrons , Conformação de Ácido Nucleico , Fosfatos/química
10.
Biochemistry ; 59(49): 4627-4637, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33275419

RESUMO

GNRA (N = A, C, G, or U; R = A or G) tetraloops are common RNA secondary structural motifs and feature a phosphate stacked atop a nucleobase. The rRNA sarcin/ricin loop (SRL) is capped by GApGA, and the phosphate p stacks on G. We recently found that regiospecific incorporation of a single dithiophosphate (PS2) but not a monothiophosphate (PSO) instead of phosphate in the backbone of RNA aptamers dramatically increases the binding affinity for their targets. In the RNA:thrombin complex, the key contribution to the 1000-fold tighter binding stems from an edge-on contact between PS2 and a phenylalanine ring. Here we investigated the consequences of replacing the SRL phosphate engaged in a face-on interaction with guanine with either PS2 or PSO for stability. We found that PS2···G and Rp-PSO···G contacts stabilize modified SRLs compared to the parent loop to unexpected levels: up to 6.3 °C in melting temperature Tm and -4.7 kcal/mol in ΔΔG°. Crystal structures demonstrate that the vertical distance to guanine for the closest sulfur is just 0.05 Å longer on average compared to that of oxygen despite the larger van der Waals radius of the former (1.80 Å for S vs 1.52 Å for O). The higher stability is enthalpy-based, and the negative charge as assessed by a neutral methylphosphonate modification plays only a minor role. Quantum mechanical/molecular mechanical calculations are supportive of favorable dispersion attraction interactions by sulfur making the dominant contribution. A stacking interaction between phosphate and guanine (SRL) or uracil (U-turn) is also found in newly classified RNA tetraloop families besides GNRA.


Assuntos
Motivos de Nucleotídeos , RNA/química , Cristalografia por Raios X , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformação de Ácido Nucleico , Fosfatos/química , RNA/genética , Estabilidade de RNA , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Ribossômico 23S/química , RNA Ribossômico 23S/genética , Termodinâmica
11.
Acta Crystallogr F Struct Biol Commun ; 74(Pt 10): 603-609, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30279310

RESUMO

Crystals of left-handed Z-DNA [d(CGCGCG)]2 diffract X-rays to beyond 1 Šresolution, feature a small unit cell (∼18 × 31 × 44 Å) and are well hydrated, with around 90 water molecules surrounding the duplex in the asymmetric unit. The duplex shows regular hydration patterns in the narrow minor groove, on the convex surface and around sugar-phosphate backbones. Therefore, Z-DNA offers an ideal case to test the benefits of low-temperature neutron diffraction data collection to potentially determine the donor-acceptor patterns of first- and second-shell water molecules. Nucleic acid fragments pose challenges for neutron crystallography because water molecules are located on the surface rather than inside sequestered spaces such as protein active sites or channels. Water molecules can be expected to display dynamic behavior, particularly in cases where water is not part of an inner shell and directly coordinated to DNA atoms. Thus, nuclear density maps based on room-temperature diffraction data with a resolution of 1.6 Šdid not allow an unequivocal determination of the orientations of water molecules. Here, cryo-neutron diffraction data collection for a Z-DNA crystal on the Macromolecular Neutron Diffractometer at the Spallation Neutron Source at Oak Ridge National Laboratory and the outcome of an initial refinement of the structure are reported. A total of 12 diffraction images were recorded with an exposure time of 3.5 h per image, whereby the crystal was static for each diffraction image with a 10° ϕ rotation between images. Initial refinements using these neutron data indicated the positions and orientations of 30 water molecules within the first hydration shell of the DNA molecule. This experiment constitutes a state-of-the-art approach and is the first attempt to our knowledge to determine the low-temperature neutron structure of a DNA crystal.


Assuntos
DNA Forma Z/química , Água/química , Temperatura Baixa , Cristalização , Cristalografia , Ligação de Hidrogênio , Difração de Nêutrons
12.
Nucleic Acids Res ; 46(16): 8090-8104, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30107495

RESUMO

Chemical modification is a prerequisite of oligonucleotide therapeutics for improved metabolic stability, uptake and activity, irrespective of their mode of action, i.e. antisense, RNAi or aptamer. Phosphate moiety and ribose C2'/O2' atoms are the most common sites for modification. Compared to 2'-O-substituents, ribose 4'-C-substituents lie in proximity of both the 3'- and 5'-adjacent phosphates. To investigate potentially beneficial effects on nuclease resistance we combined 2'-F and 2'-OMe with 4'-Cα- and 4'-Cß-OMe, and 2'-F with 4'-Cα-methyl modification. The α- and ß-epimers of 4'-C-OMe-uridine and the α-epimer of 4'-C-Me-uridine monomers were synthesized and incorporated into siRNAs. The 4'α-epimers affect thermal stability only minimally and show increased nuclease stability irrespective of the 2'-substituent (H, F, OMe). The 4'ß-epimers are strongly destabilizing, but afford complete resistance against an exonuclease with the phosphate or phosphorothioate backbones. Crystal structures of RNA octamers containing 2'-F,4'-Cα-OMe-U, 2'-F,4'-Cß-OMe-U, 2'-OMe,4'-Cα-OMe-U, 2'-OMe,4'-Cß-OMe-U or 2'-F,4'-Cα-Me-U help rationalize these observations and point to steric and electrostatic origins of the unprecedented nuclease resistance seen with the chain-inverted 4'ß-U epimer. We used structural models of human Argonaute 2 in complex with guide siRNA featuring 2'-F,4'-Cα-OMe-U or 2'-F,4'-Cß-OMe-U at various sites in the seed region to interpret in vitro activities of siRNAs with the corresponding 2'-/4'-C-modifications.


Assuntos
Oligonucleotídeos/química , Estabilidade de RNA/genética , RNA Interferente Pequeno/química , Termodinâmica , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico , Oligonucleotídeos/genética , Fosfatos/química , Interferência de RNA , Ribonucleases/química , Ribose/química , Uridina/química , Uridina/genética
13.
ACS Chem Neurosci ; 9(9): 2274-2285, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-29701957

RESUMO

Selective activation of the M1 subtype of muscarinic acetylcholine receptor, via positive allosteric modulation (PAM), is an exciting strategy to improve cognition in schizophrenia and Alzheimer's disease patients. However, highly potent M1 ago-PAMs, such as MK-7622, PF-06764427, and PF-06827443, can engender excessive activation of M1, leading to agonist actions in the prefrontal cortex (PFC) that impair cognitive function, induce behavioral convulsions, and result in other classic cholinergic adverse events (AEs). Here, we report a fundamentally new and highly selective M1 PAM, VU0486846. VU0486846 possesses only weak agonist activity in M1-expressing cell lines with high receptor reserve and is devoid of agonist actions in the PFC, unlike previously reported ago-PAMs MK-7622, PF-06764427, and PF-06827443. Moreover, VU0486846 shows no interaction with antagonist binding at the orthosteric acetylcholine (ACh) site (e.g., neither bitopic nor displaying negative cooperativity with [3H]-NMS binding at the orthosteric site), no seizure liability at high brain exposures, and no cholinergic AEs. However, as opposed to ago-PAMs, VU0486846 produces robust efficacy in the novel object recognition model of cognitive function. Importantly, we show for the first time that an M1 PAM can reverse the cognitive deficits induced by atypical antipsychotics, such as risperidone. These findings further strengthen the argument that compounds with modest in vitro M1 PAM activity (EC50 > 100 nM) and pure-PAM activity in native tissues display robust procognitive efficacy without AEs mediated by excessive activation of M1. Overall, the combination of compound assessment with recombinant in vitro assays (mindful of receptor reserve), native tissue systems (PFC), and phenotypic screens (behavioral convulsions) is essential to fully understand and evaluate lead compounds and enhance success in clinical development.


Assuntos
Cognição/efeitos dos fármacos , Condicionamento Psicológico/efeitos dos fármacos , Comportamento Exploratório/efeitos dos fármacos , Morfolinas/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Pirazóis/farmacologia , Regulação Alostérica , Animais , Antipsicóticos/toxicidade , Células CHO , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/fisiopatologia , Cricetulus , Medo , Camundongos , Morfolinas/toxicidade , Pirazóis/toxicidade , Ratos , Risperidona/toxicidade , Convulsões/induzido quimicamente
14.
ACS Med Chem Lett ; 8(10): 1110-1115, 2017 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-29057060

RESUMO

Herein, we report the structure-activity relationships within a series of mGlu7 PAMs based on a pyrazolo[1,5-a]pyrimidine core with excellent CNS penetration (Kps > 1 and Kp,uus > 1). Analogues in this series proved to display a range of Group III mGlu receptor selectivity, but VU6005649 emerged as the first dual mGlu7/8 PAM, filling a void in the Group III mGlu receptor PAM toolbox and demonstrating in vivo efficacy in a mouse contextual fear conditioning model.

15.
Mol Imaging Biol ; 19(4): 578-588, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27853987

RESUMO

PURPOSE: Positron emission tomography (PET) ligands targeting translocator protein (TSPO) are potential imaging diagnostics of cancer. In this study, we report two novel, high-affinity TSPO PET ligands that are 5,7 regioisomers, [18F]VUIIS1009A ([18F]3A) and [18F]VUIIS1009B ([18F]3B), and their initial in vitro and in vivo evaluation in healthy mice and glioma-bearing rats. PROCEDURES: VUIIS1009A/B was synthesized and confirmed by X-ray crystallography. Interactions between TSPO binding pocket and novel ligands were evaluated and compared with contemporary TSPO ligands using 2D 1H-15N heteronuclear single quantum coherence (HSQC) spectroscopy. In vivo biodistribution of [18F]VUIIS1009A and [18F]VUIIS1009B was carried out in healthy mice with and without radioligand displacement. Dynamic PET imaging data were acquired simultaneously with [18F]VUIIS1009A/B injections in glioma-bearing rats, with binding reversibility and specificity evaluated by radioligand displacement. In vivo radiometabolite analysis was performed using radio-TLC, and quantitative analysis of PET data was performed using metabolite-corrected arterial input functions. Imaging was validated with histology and immunohistochemistry. RESULTS: Both VUIIS1009A (3A) and VUIIS1009B (3B) were found to exhibit exceptional binding affinity to TSPO, with observed IC50 values against PK11195 approximately 500-fold lower than DPA-714. However, HSQC NMR suggested that VUIIS1009A and VUIIS1009B share a common binding pocket within mammalian TSPO (mTSPO) as DPA-714 and to a lesser extent, PK11195. [18F]VUIIS1009A ([18F]3A) and [18F]VUIIS1009B ([18F]3B) exhibited similar biodistribution in healthy mice. In rats bearing C6 gliomas, both [18F]VUIIS1009A and [18F]VUIIS1009B exhibited greater binding potential (k 3/k 4)in tumor tissue compared to [18F]DPA-714. Interestingly, [18F]VUIIS1009B exhibited significantly greater tumor uptake (V T) than [18F]VUIIS1009A, which was attributed primarily to greater plasma-to-tumor extraction efficiency. CONCLUSIONS: The novel PET ligand [18F]VUIIS1009B exhibits promising characteristics for imaging glioma; its superiority over [18F]VUIIS1009A, a regioisomer, appears to be primarily due to improved plasma extraction efficiency. Continued evaluation of [18F]VUIIS1009B as a high-affinity TSPO PET ligand for precision medicine appears warranted.


Assuntos
Proteínas de Transporte/metabolismo , Diagnóstico por Imagem , Radioisótopos de Flúor/química , Glioma/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Animais , Sítios de Ligação , Proteínas Sanguíneas/metabolismo , Linhagem Celular Tumoral , Radioisótopos de Flúor/farmacocinética , Glioma/patologia , Ligantes , Masculino , Camundongos Endogâmicos C57BL , Ratos , Distribuição Tecidual , Imagem Corporal Total
16.
Bioorg Med Chem Lett ; 26(23): 5757-5764, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28327307

RESUMO

Herein, we report the synthesis and structure-activity relationship of a novel series of (R)-4,4-difluoropiperidine core scaffold as dopamine receptor 4 (D4) antagonists. A series of compounds from this scaffold are highly potent against the D4 receptor and selective against the other dopamine receptors. In addition, we were able to confirm the active isomer as the (R)-enantiomer via an X-ray crystal structure.


Assuntos
Antipsicóticos/química , Antipsicóticos/farmacologia , Antagonistas de Dopamina/química , Antagonistas de Dopamina/farmacologia , Piperidinas/química , Piperidinas/farmacologia , Receptores de Dopamina D4/antagonistas & inibidores , Animais , Antipsicóticos/síntese química , Antipsicóticos/farmacocinética , Cristalografia por Raios X , Descoberta de Drogas , Halogenação , Humanos , Isomerismo , Modelos Moleculares , Piperidinas/farmacocinética , Ratos , Receptores de Dopamina D4/química , Receptores de Dopamina D4/metabolismo
17.
J Biol Chem ; 290(26): 15921-33, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-25947374

RESUMO

Like the other Y-family DNA polymerases, human DNA polymerase η (hpol η) has relatively low fidelity and is able to tolerate damage during DNA synthesis, including 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxoG), one of the most abundant DNA lesions in the genome. Crystal structures show that Arg-61 and Gln-38 are located near the active site and may play important roles in the fidelity and efficiency of hpol η. Site-directed mutagenesis was used to replace these side chains either alone or together, and the wild type or mutant proteins were purified and tested by replicating DNA past deoxyguanosine (G) or 8-oxoG. The catalytic activity of hpol η was dramatically disrupted by the R61M and Q38A/R61A mutations, as opposed to the R61A and Q38A single mutants. Crystal structures of hpol η mutant ternary complexes reveal that polarized water molecules can mimic and partially compensate for the missing side chains of Arg-61 and Gln-38 in the Q38A/R61A mutant. The combined data indicate that the positioning and positive charge of Arg-61 synergistically contribute to the nucleotidyl transfer reaction, with additional influence exerted by Gln-38. In addition, gel filtration chromatography separated multimeric and monomeric forms of wild type and mutant hpol η, indicating the possibility that hpol η forms multimers in vivo.


Assuntos
DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , 8-Hidroxi-2'-Desoxiguanosina , Motivos de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , DNA/genética , DNA/metabolismo , Replicação do DNA , DNA Polimerase Dirigida por DNA/genética , Humanos , Mutagênese Sítio-Dirigida , Especificidade por Substrato
18.
J Med Chem ; 56(22): 9351-5, 2013 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24164599

RESUMO

A functional high throughput screen and subsequent multidimensional, iterative parallel synthesis effort identified the first muscarinic acetylcholine receptor (mAChR) negative allosteric modulator (NAM) selective for the M5 subtype. ML375 is a highly selective M5 NAM with submicromolar potency (human M5 IC50 = 300 nM, rat M5 IC50 = 790 nM, M1-M4 IC50 > 30 µM), excellent multispecies PK, high CNS penetration, and enantiospecific inhibition.


Assuntos
Encéfalo/metabolismo , Descoberta de Drogas , Imidazóis/química , Imidazóis/farmacologia , Indóis/química , Indóis/farmacologia , Receptor Muscarínico M5/metabolismo , Regulação Alostérica/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Células CHO , Cricetinae , Cricetulus , Avaliação Pré-Clínica de Medicamentos , Humanos , Imidazóis/metabolismo , Imidazóis/farmacocinética , Indóis/metabolismo , Indóis/farmacocinética , Masculino , Ratos , Receptor Muscarínico M5/química , Relação Estrutura-Atividade , Especificidade por Substrato
19.
Chemistry ; 19(36): 11847-52, 2013 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-23956045

RESUMO

Winning the relay: The first total synthesis of stemaphylline N-oxide has been completed utilizing a bistandem relay ring-closing-metathesis (RRCM) strategy, necessitated by the conformation of the requisite tetraene. This effort also gave unnatural 9a-epi-stemaphylline and 9a-epi-stemaphylline N-oxide.


Assuntos
Alcaloides/química , Alcaloides/síntese química , Alcenos/química , Ciclização , Conformação Molecular
20.
J Med Chem ; 56(8): 3429-33, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23521048

RESUMO

Focused library synthesis and structure-activity relationship development of 5,6,7-substituted pyrazolopyrimidines led to the discovery of 2-(5,7-diethyl-2-(4-(2-fluoroethoxy)phenyl)pyrazolo[1,5-a]pyrimidin-3-yl)-N,N-diethylacetamide (6b), a novel translocator protein (TSPO) ligand exhibiting a 36-fold enhancement in affinity compared to another pyrazolopyrimidine-based TSPO ligand, 6a (DPA-714). Radiolabeling with fluorine-18 ((18)F) facilitated production of 2-(5,7-diethyl-2-(4-(2-[(18)F]fluoroethoxy)phenyl)pyrazolo[1,5-a]pyrimidin-3-yl)-N,N-diethylacetamide ((18)F-6b) in high radiochemical yield and specific activity. In vivo studies of (18)F-6b were performed which illuminated this agent as an improved probe for molecular imaging of TSPO-expressing cancers.


Assuntos
Pirazóis/síntese química , Pirimidinas/síntese química , Compostos Radiofarmacêuticos/síntese química , Receptores de GABA/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Radioisótopos de Flúor , Humanos , Tomografia por Emissão de Pósitrons/métodos , Ratos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...